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ABSTRACT

The clinical utility of multi-dimensional MRI applications like multi-parameter

mapping and 3D dynamic lung imaging is limited by long acquisition times. Quan-

tification of multiple tissue MRI parameters has been shown to be useful for early

detection and diagnosis of various neurological diseases and psychiatric disorders.

They also provide useful information about disease progression and treatment effi-

cacy. Dynamic lung imaging enables the diagnosis of abnormalities in respiratory

mechanics in dyspnea and regional lung function in pulmonary diseases like chronic

obstructive pulmonary disease (COPD), asthma etc. However, the need for acqui-

sition of multiple contrast weighted images as in case of multi-parameter mapping

or multiple time points as in case of pulmonary imaging, makes it less applicable in

the clinical setting as it increases the scan time considerably. In order to achieve

reasonable scan times, there is often tradeoffs between SNR and resolution.

Since, most MRI images are sparse in known transform domain; they can

be recovered from fewer samples. Several compressed sensing schemes have been

proposed which exploit the sparsity of the signal in pre-determined transform domains

(eg. Fourier transform) or exploit the low rank characteristic of the data. However,

these methods perform sub-optimally in the presence of inter-frame motion since the

pre-determined dictionary does not account for the motion and the rank of the data

is considerably higher. These methods rely on two step approach where they first

estimate the dictionary from the low resolution data and using these basis functions

they estimate the coefficients by fitting the measured data to the signal model.

iv
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The main focus of the thesis is accelerating the multi-parameter mapping

and 3D dynamic lung imaging applications to achieve desired volume coverage and

spatio-temporal resolution. We propose a novel dictionary learning framework called

the Blind compressed sensing (BCS) scheme to recover the underlying data from un-

dersampled measurements, in which the underlying signal is represented as a sparse

linear combination of basic functions from a learned dictionary. We also provide an ef-

ficient implementation using variable splitting technique to reduce the computational

complexity by up to 15 fold. In both multi- parameter mapping and 3D dynamic

lung imaging, the comparisons of BCS scheme with other schemes indicates superior

performance as it provides a richer presentation of the data. The reconstructions from

BCS scheme result in high accuracy parameter maps for parameter imaging and di-

agnostically relevant image series to characterize respiratory mechanics in pulmonary

imaging.

v
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PUBLIC ABSTRACT

Multi-dimensional MRI is a promising imaging modality. Since it is radia-

tion free modality, it has advantages over other imaging modalities like computed

tomography (CT), X-rays, etc. MRI acquisition is inherently slow due to hardware

limitations that leads to peripheral nerve stimulation. The acquisition speed of MRI

limits its diagnostic ability in clinics.

The quantification of multiple tissue parameters from MRI datasets is emerg-

ing as a powerful tool for tissue characterization. Parameters such as proton density,

longitudinal and transverse relaxation times (denoted by T1 and T2), relaxation times

in the rotating frame (T1ρ and T2ρ), as well as diffusion have been shown to be use-

ful in diagnosis of various neurological diseases. Although a single parameter may be

sensitive to a number of tissue properties of interest, it may not be specific. Acquiring

additional parameters can improve the specificity.

Dynamic lung imaging enables the diagnosis of the abnormalities to the active

and passive components involved in respiratory pumping including diaphragm paresis

or paralysis, abnormal chest wall mechanics, and muscle weakness, resulting from

neuromuscular, pulmonary, or obesity related disorders in dyspnea. It is a powerful

non-invasive, non-contrast tool to access abnormalities in regional lung function in

pulmonary diseases like chronic obstructive pulmonary disease (COPD), asthma, etc.

However, the need for acquisition of multiple contrast weighted images as

in case of multi-parameter mapping or multiple time points as in case of pulmonary

imaging increase the scan time considerably. The most common approach is to collect

vi
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fewer samples. Most MRI images are sparse in some transform domain. In order words

they have only a few non-zero coefficients and hence they can be recovered from fewer

samples.

Several researchers have developed various schemes for recovering the underly-

ing data with fewer samples. However, they sub-optimal in multi-parameter mapping

as well as dynamic pulmonary imaging applications for a number of reasons. Most of

these methods make assumptions that are not realistic. For example, some methods

assume the data to lie on a low dimensional space which might not true in the event

of large interframe motion. Some methods rely on pre-determined information which

poorly mimic the actual scenario.

The goal of this thesis is to recover the multi-dimensional MRI data from fewer

samples by using a novel scheme called the blind compressed sensing (BCS) scheme.

This scheme represents the underlying signal at every pixel as a linear combination

of few atoms of the dictionary. The dictionary here is learned from the undersam-

pled data and hence is subject specific. This thesis presents a fast implementation

technique to improve the computation speed of the algorithm. The BCS scheme

with its fast implementation has enabled several fold acceleration in acquisition with-

out affecting the image quality. It has the ability to improve some state of the art

algorithms used for accelerating multi-dimensional MRI applications.

vii
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1

CHAPTER 1
INTRODUCTION

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality based

on the principles of nuclear magnetic resonance (NMR). The use of MRI as imaging

modality has been growing rapidly since its first commercial usage in 1981. Unlike

other imaging modalities like positron emission tomography (PET) and computed

tomography (CT) which use radiation, MRI uses radio-waves and strong magnetic

fields to acquire images and hence does not require exposure to ionizing radiation.

While X-rays provide detailed information about high density structures like bones,

MRI provides good quality images of soft tissues and anatomical structures with

high contrast. Like MRI, Ultrasound is also a non-ionizing imaging technique. It

uses sound waves to acquire images. Though both imaging techniques provide high

resolution images and are radiation free, Ultrasound can be sub-optimal in regions

with interfaces between bone and air.

Another advantage of MRI as opposed to other imaging modalities is its abil-

ity to provide images with multiple tissue contrasts. These images are obtained by

varying different parameters of the imaging sequence like echo time, repetition time,

etc. For example, T1 weighted images differentiate between gray matter and white

matter in the brain that helps in assessment of myelination, where as the T2 weighted

images enhance contrast for myocardial edema. Diffusion MRI helps in detection of

neuronal fibre tracts. Fig. 1.1 shows different contrast images in brain MRI.

The ability of MRI to safely provide information about anatomical structure
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Figure 1.1: Brain images with different contrasts in MRI Brain images with differ-
ent contrasts in MRI: Images with different contrast like T1 weighted, T2 weighted,
Diffusion weighted and T1ρ are shown here

as well as physiological behavior makes it a promising diagnostic tool in several multi-

dimensional applications like MR relaxometry, MR spectroscopy, CEST imaging, and

dynamic imaging of the heart, lungs, liver, abdomen etc. (See Fig. 1.2). In this

thesis we will discuss about dynamic lung imaging and multi-parameter mapping of

the brain.

1.1 Motivation

One of the main challenges with MRI is its slow acquisition speed. The MRI

images are acquired in Fourier space (k space) using Fourier domain encoding. This

encoding is a slow process as it is limited by gradient amplitudes and gradient switch-

ing rates that could risk in peripheral nerve stimulation. [1, 2]. This makes it less

applicable in the clinical setting especially in case of multi-dimensional MRI applica-

tions such as dynamic imaging of moving organs, dynamic imaging of contrast uptake
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Figure 1.2: Multi-dimensional MRI applications Multi-dimensional MRI applications

through organs and characterization of tissue time relaxation parameters.

In multi-dimensional applications, multiple images are obtained as a function

of time or parameters. For these applications, images need to be acquired with high

spatio-temporal resolution and volume coverage in limited scan time while maintain-

ing good image quality. For example, for multi-parameter mapping of the brain, the

desirable acquisition parameters are whole brain coverage (≈128 slices), high spatial

resolution (< 2mm3) and multiple images at different parameters to accurately and

precisely estimate the relaxation parameters. In case of dynamic pulmonary applica-
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Figure 1.3: Tradeoffs in MRI Tradeoffs in MRI: MRI acquisitions are often limited
by scan time, resolution and SNR.

tion, the desirable parameters are high temporal resolution (≈ 500 ms), good spatial

resolution to accurately delineate the diaphragm borders and whole lung coverage.

In order to acquire all the required data in clinical feasible scan times, clinicians

are forced to compromise between spatial resolution, temporal resolution, volume

coverage and signal to noise ratio. This results in sub-optimal diagnostic performance.

The figure Fig. 1.3 shows the tradeoff between scan time, SNR and resolution. The

SNR can be increased in two ways. The first one, by increasing the number of

averages, however this directly affects the scan time. The other way, by increasing

the thickness of the voxel, however this leads to reduction in the resolution. Since

the images are acquired in k space, there exists an inverse relationship between image

domain parameters and k space parameters. The Nyquist sampling theorem states

that the resolution in image domain is determined by extent of k space region while
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Figure 1.4: Relation between image space and k space Relation between image space
and k space: The image domain and k space domain are related to each other by
Fourier transform. The sampling parameters in both these domains are inversely
proportional to each other. The maximum coverage of k space determines the spatial
resolution and the field of view (FOV) limits the sampling density in k space.

the density of samples in the k space determines the field of view (FOV) in image

domain as shown in Fig. 1.4.

Hence increasing the resolution also increases scan time. One way to reduce

the scan time is to acquire fewer number of samples. However, sub-Nyquist sampling

results in aliasing artifacts. Several researchers have proposed a number of tech-

niques to reduce the aliasing artifacts using advance reconstruction methods. The

image recovery from undersampled measurements is posed as an inverse problem.

These problems are formulated as a linear combination of data consistency and reg-

ularization penalty. The regularization penalty makes use of the prior information

like sparsity and low rank of the data. The advanced acceleration schemes have been
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discussed in more detail in the following chapter.

1.2 Main focus

The main goal of this thesis is to develop an efficient reconstruction algo-

rithm for accelerating multi-dimensional applications like multi-parameter mapping

and dynamic lung imaging. We introduce novel adaptive dictionary learning scheme

with fast implementations to accelerate whole brain multi-parameter mapping and

3D dynamic free breathing lung MRI.

The main contributions of the thesis is :

1. Multi-coil Blind compressed sensing algorithm and a variable splitting based

fast implementation: We have introduce a novel algorithm which is a extended

version of the blind compressed sensing (BCS) scheme. This algorithm incorpo-

rates coil sensitivity encoding for parallel imaging and is generalized to account

for non - convex penalties. We developed an efficient algorithm which uses the

augmented Lagrangian approach to solve for the dictionary and a majorize min-

imize approach to solve for the coefficients. The algorithm also employs efficient

continuation strategies to minimize the local minima effects. We also developed

a faster implementation of the algorithm to further reduced the computation

time using the variable splitting approach. We adopt a double splitting in the

data consistency term which separates the Fourier encoding, coil sensitivity en-

coding and the underlying signal to get an analytical solution for each of the

subproblems. With the fast implementation of the multi-coil BCS algorithm, we
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have achieved a speed up factor of up to ≈ 15 times. We have demonstrated that

the image quality is comparable to the image quality obtained using the original

conjugate gradient implementation. Related publications include Refs. [3, 4]

2. Application of the multi-coil BCS algorithm to accelerate whole brain multi-

parameter mapping: We demonstrate the utility of BCS scheme to enable whole

brain multi-parameter mapping. In this work, we looked at jointly reconstruct-

ing T1ρ and T2 weighted acquisitions. We rely on Cartesian sampling schemes.

A novel sampling strategy was introduced which is a combination of uniform

pattern suitable for parallel imaging and variable density incohorent pattern

suitable for compressed sensing. We also showed the advantages of multi-

parameter mapping over single parameter mapping. Multi-parameter mapping

can not only enable higher acceleration thus reduction in scan time but also

improve the specificity of T1ρ which could be very useful in diagnosis (for eg.

early detection of disease, categorizing disease progression). We observed supe-

rior image quality, improved parameter map accuracy and robustness to motion

with BCS scheme as compared to other schemes at different acceleration factors.

With the multi-coil BCS scheme and an acceleration factor of 8, we could enable

whole brain 3D multi-parameter mapping with 1.7mm3 isotropic resolution in

clinically feasible scan time of 20min. Related publications include Refs. [5, 6]

3. Application of the multi-coil BCS algorithm to study the clinical evaluation of

respiratory mechanics from 3D dynamic free breathing lung MRI: We demon-



www.manaraa.com

8

strate the utility of the multi-coil BCS scheme to increase the spatial and tem-

poral resolution of dynamic 3D MR imaging of diaphragm motion and lung

volumes with whole lung coverage. We compare the reconstructions from BCS

scheme with other schemes qualitatively and quantitatively on 8 healthy volun-

teers. Two expert cardio-thoracic radiologists qualitatively evaluate the recon-

structed 3D datasets using a five-point scale on the basis of spatial resolution,

temporal resolution and presence of aliasing artifacts. We also demonstrate the

feasibility of the BCS scheme in calculating lung volume changes which could

be useful to perform correlations with spirometry measurements. A temporal

resolution of ≈500ms, spatial resolution of 2.7 x 2.7 x 10mm3 with whole lung

coverage (16 slices) was achieved using the BCS scheme. Related Refs. [7–9]

1.3 Outline of the thesis

The structure of the thesis is as follows:

• Chapter 2: Background: This chapter presents a brief overview of the dif-

ferent compressed sensing and dictionary learning based schemes used for ac-

celerating multi-dimensional MRI applications

• Chapter 3: A variable splitting based algorithm for fast multi-coil

blind compressed sensing MRI reconstruction: This chapter presents ex-

tensions of the Blind compressed sensing scheme to include parallel imaging

and non-convex penalties along with a novel implementation. Using a vari-

able splitting technique, this chapter presents an faster implementation which
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reduces the computation time of the multi-coil BCS scheme by up to 15 fold.

• Chapter 4: Accelerated whole brain multi-parameter mapping using

blind compressed scheme: In this chapter, we demonstrate the utility of

multi-coil BCS scheme to enable whole brain T1ρ and T2 parameter mapping.

The chapter discusses considerations on sampling schemes and advantages of

multi-parameter mapping as compared to single parameter mapping. Excessive

comparisons against existing acceleration methods are presented.

• Chapter 5: Blind compressed sensing enables 3D dynamic free breath-

ing MR imaging of lung volumes and diaphragm motion: In this chap-

ter, we demonstrate the utility of multi-coil BCS scheme to enable 3D dynamic

free breathing lung imaging. Clinical evaluations comparing the BCS scheme

and other existing methods on a cohort of 8 healthy individuals are presented.

Analysis of lung volume changes from the reconstructed datasets using image

segmentation is presented in this chapter

• Chapter 6: Summary and future work: This chapter provides summary

of the thesis and discusses further directions about the research.
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CHAPTER 2
BACKGROUND

In this chapter, we will study few existing schemes to accelerate multi- dimen-

sional applications. We mainly look at recent advances in signal representation which

exploit the redundancy in the data. Several researchers have introduced different

acquisition schemes which exploit the redundancy in the data as well as the advances

in parallel imaging. The chapter is organized as follows: We will start by introducing

the global signal model, followed by linear models and compressed sensing schemes.

The later section describes the blind linear models and the blind compressed sensing

scheme.

2.1 Global signal model

2.1.1 Recovery from undersampled measurements

As mentioned in the previous chapter, accelerated acquisitions for multi- di-

mensional MRI applications can help improve the tradeoffs between resolution and

coverage. We represent the multi-dimensional signal as γ(r, d) where r = (x, y, z) are

the spatial coordinates and d denotes the time or the parametric dimension depend-

ing upon the MRI application. The undersampled measurement in the k− d space is

expressed as:

b(kr, di) =

∫
r

cl(r, di)γ(r, di)exp(−jkTr r)dr + n(kr, di) (2.1)
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where cl(r, di) denotes the space and time dependent coil sensitivity profiles, kr, di

denotes the ith location in the kr, d space and n denotes the additive noise. The

expression in Eq. (2.1) can be compactly written as:

b = A(γ) + n (2.2)

where the operator A models the Fourier encoding on a specified sampling trajectory.

It can also model the coil sensitivity information for parallel imaging. The goal is to

recover the multi-dimensional data from these undersampled measurements b.

2.1.2 Partial separable (PS) model

Several models used for recovering undersampled signal utilize a single global

signal model to represent the voxel profiles γ(r, d) and can be interpreted by the

partial separability (PS) model. This partial separability model proposed by Liang

et al. [10] represents the signal as shown below:

γ(r, d) =
R∑
i=1

γi(r, d) =
R∑
i=1

ui(r)vi(d) (2.3)

where R denotes the total number of basis functions in the dictionary denoted by

vi. ui denote the coefficients also referred to as spatial weights. The number of basis

functions can be interpreted as the model order of the data.
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Table 2.1: Overview of different acceleration schemes which use the partial separable
model Overview of different acceleration schemes which use the partial separable
model

Type of basis
functions

Number of basis
functions

Sparsity on
coefficients?

Linear models eg.
DIME, k-t BLAST

Exponential Few No

Blind linear models
eg.PSF, k-t PCA,

k-t SLR
Learnt Few No

Compressed sensing
eg. k-t SPARSE, k-t

FOCUSS
Pre-determined Many Yes

Blind compressed
sensing

Learnt Many Yes

2.2 PS model based schemes for accelerating multi-dimensional imaging

Based on the choices for number and type of basis functions, constraints on

the model coefficients, several acceleration schemes have evolved over recent years as

shown in Table 5.1.

2.2.1 Linear models

The linear models like DIME [11], UNFOLD [12,13] and k-t BLAST [14] rep-

resent the signal as a linear combination of few exponential temporal basis functions.

These models are suited for MRI applications which are periodic in nature. For ex-

ample, in cardiac CINE imaging, the time domain signal is pseudo-periodic in nature

and hence x− f space has very few non-zero components as shown in Fig. 2.1
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Figure 2.1: CINE data representation in temporal Fourier transform domain (x-f)
CINE data representation in temporal Fourier transform domain (x-f): The figure
shows a numerical cardiac CINE phantom. A spatial image, its time profile, the
representation in x − f space and sampling pattern is shown in (a-d). Note: The
x− f space has few a non-zeros entries.

The signal representation for linear models is:

γ(r, t) =
R∑
i=1

ui(r)e
j2πfit;R < N (2.4)

The recovery of signals under this model is a two step process. In the first step, the

frequencies fi are determined from training data (also called as navigator signals).

Once the frequencies are known, the model coefficients ui’s can be estimated by

fitting the data with the model in Eq.(2.4) in the least square sense. These methods

which rely on coherent sampling patterns result in aliasing artifacts in form of signal

overlaps. Since these models assume the signal to be periodic, such methods are not

suited for applications with non-periodic signals (eg. Free breathing cardiac perfusion

imaging). The inaccuracy in training data can result in mismatch between the data

and the model.
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2.2.2 Compressed sensing (CS)

In compressed sensing (CS) based techniques, the multi-dimensional signal is

represented as a sparse linear combination of atoms from a pre-determined dictionary.

The CS representation of a signal is as follows:

γ(r, d) =
R∑
i=1

ui(r)︸︷︷︸
sparse

vi(d)︸︷︷︸
pre−determined

;R > N (2.5)

The basis functions vi(t) are pre-determined and they belong to an over-complete

and not necessarily orthogonal dictionary. Unlike linear models, the dictionary is

not limited to Fourier dictionary. Depending on the application, the dictionary can

be formed from Fourier signals as in case of cardiac CINE imaging or from Bloch

equations as in case of parameter mapping [15]. Unlike, linear models the sampling

patterns in this model are incoherent. The CS scheme assumes the model coefficients

ui(r) to be sparse. The analysis formulation for CS scheme is as follows:

γ(r, d) = arg min
γ
‖A(γ)− b‖2

F + λ‖ψ(γ)‖`1 (2.6)

Here ψ is a sparsity inducing operator. For example, it can be chosen as a wavelet

transform [16,17], finite difference [18,19], or Fourier transform operator [20,21]. This

sparsity is enforced using an `1 norm. For example, as seen in Fig. 2.1(c), the x− f

sparsity in CINE imaging dataset is exploited by the CS scheme. CS scheme elimi-

nates the need for training data, however, the performance is heavily dependent on

the sparsifying operator and the pre-determined dictionary. For example, in param-
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Figure 2.2: Casorati matrix representation of multi-parameter mapping dataset Caso-
rati matrix representation of multi-parameter mapping dataset: The figure shows the
Casorati matrix Γ where each of the contrast weighted images are stacked as column
vectors.

eter mapping applications, the dictionary is formed from Bloch equations. However,

in presence of motion during acquisition this dictionary is sub-optimal as it does not

account for motion. This lead to further investigation of data adaptive representation

which are discussed in the next sections.

2.2.3 Blind linear models

Blind linear models (BLM) are the adaptation of linear models to non-periodic

multi-dimensional datasets (For example. Cardiac perfusion imaging, See Fig. 2.3(b)).

BLM models assume the basis functions to be arbitrary instead of Fourier exponen-

tials as in case of linear models. The basis functions are learnt from the data itself

and hence is termed as blind linear models. The signal is represented as a linear com-

bination of few arbitrary basis functions. In order to exploit the correlations within

the data, the data is rearranged as a Casorati matrix [10] as shown below (See Fig.

2.2:
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Figure 2.3: Representation of non-periodic signal in x− f domain Representation of
non-periodic signal in x− f domain: A spatial frame, time profile, x− f domain rep-
resentation and the sampling pattern is shown for a numerical phantom that mimics
a Cardiac perfusion MRI data (a-d). Since the cardiac perfusion data is non-periodic
in nature, the x−f space is no longer sparse. Note: The specialized sampling pattern
in (d) are required in the two step approaches used in BLM/ low rank models.

ΓM×N =




γ(r1, d1) . γ(r1, dN )

. . .

. . .

γ(rM , d1) . γ(rM , dN )




(2.7)

where M is the number of voxels in the image and N is the number of encoding

parameters. This matrix Γ can be decomposed as UM×RΣR×RV
H
R×N . The signal

representation with respect to PS model is as follows:

γ(r, d) =
R∑
i=1

ui(r) vi(d)︸︷︷︸
learnt

;R << N (2.8)

The basis functions vi(d) are the columns of the matrix V and the coefficients ui(r)

are the row vectors of UΣ. These basis functions estimated by performing principal
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component analysis (PCA), singular value decomposition (SVD) or Karhunen - Loeve

transform (KLT) on the data itself to provide richer representations as compared to

linear models. The signal recovery is a two step approach [10,20,22,23] .

1. The first step is to estimate the basis functions vi(d) from training data using

PCA/SVD/KLT. Low resolution spatial data is often used as training data.

This data is obtained by taking the inverse fast Fourier transform (IFFT) of the

center k-space and hence requires the center k-space to be sampled at Nyquist

sampling rate.

2. Once the basis functions are estimated, the model coefficients uir are determined

using least square fitting method from the undersampled data.

Even though, the BLM models provide a richer representation than linear

models or CS based models, there have a few drawbacks. The BLM models assume

that basis functions estimated from the low resolution data approximate the actual

basis functions of the fully sampled data. Also, it requires specialized sampling pat-

terns as show in Fig. 2.3(d) which sample the center k-space at Nyquist sampling

rate and the outer k-space at sub-Nyquist sampling.

2.2.4 Low rank and sparse recovery

The low rank methods [24, 25] assume the data to lie on a low dimensional

subspace and hence the Casorati matrix Γ in Eq. (2.7) can also be considered to have
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a low rank. The low rank matrix recovery problem is formulated as follows:

Γ = arg min
Γ
‖A(Γ)− b‖2

F + λ‖Γ‖∗ (2.9)

Here the first term is the data consistency term. The nuclear norm penalty denoted

by ‖Γ‖∗ which is the sum of the singular values of Γ, is a convex relaxation for

the rank constraint. This formulation jointly estimates the basis functions and the

model coefficients and hence eliminates the need for training data. Some approaches

also employ non-convex penalties like Schatten- p norm (p <1) to enforce low rank

constraint [26].

The performance of low rank methods can be further improved by adding

sparsity constraints. Some methods decompose the data as low rank plus sparse [27]

while other methods employ joint low rank and sparsity constraints [26]. The k-t SLR

scheme enforces the low rank penalty using the Schatten p-norm in addition to the

spatio-temporal sparsity. The image recovery in k-t SLR scheme is formulated as:

Γ∗ = arg min
Γ
‖A(Γ)− b‖2

2 + λ1

min(M,N)∑
i=1

(Σi,i)
p


+λ2‖

√
| 5x (Γ)|2 + | 5y (Γ)|2 + α| 5t (Γ)|2‖`1

(2.10)

where λ1, λ2, α are the regularization parameters. The second term enforces the low

rank constraint where as the third term enforces sparsity through spatio-temporal

total variation penalty.

The low rank and two step BLM methods assume the data to be globally low
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rank. However since the voxel profiles are different at different anatomical regions the

rank of the model would be different across these regions. Specifically, the rank of the

dataset in regions with more motion (near the heart in case of cardiac imaging or near

the chest wall or diaphragm in lung imaging) is higher than the rank of the dataset in

static regions. Hence locally low rank models would provide a richer representation

as compared to these low rank models or low rank and sparse models.

2.2.5 Blind compressed sensing

Like CS scheme, the voxel intensity profiles are modeled as a sparse linear

combination of basis functions from a dictionary. However, the dictionary is learnt

from the undersampled measurements unlike CS which uses pre-determined dictio-

nary. Specifically, the Casorati matrix of the data Γ is modeled as Γ = UV. The

proposed algorithm learns the dictionary basis functions V, as well as their sparse

coefficients U, from the undersampled data by solving a constrained optimization

problem. The recovery from the undersampled measurements is formulated as shown

below:

{U∗,V∗} = arg min
U,V

‖A(UV)− b‖2
F + λ‖U‖l1︸ ︷︷ ︸

C(U,V)

such that ‖V‖2
F < 1. (2.11)

The first term in Eq. [3.3] ensures data consistency. The A operator encodes

the Fourier transform operator on a specified sampling trajectory. The second term

promotes sparsity on the spatial coefficients ui(x) by utilizing a convex `1 norm prior

on U, which is given by ‖U‖l1 =
(∑M

i=1

∑r
j=1 |u(i, j)|

)
, and λ is the regularization
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parameter. The optimization problem is constrained by imposing unit Frobenius

norm on the over-complete dictionary V, making the recovery problem well posed.

Since the dictionary is subject-specific, this approach ensures that any deviations

from the true parametric encoding, such as subject motion, field inhomogeneity and

chemical shift artifacts, are learned by the basis functions. The BCS scheme uses

a considerably larger dictionary of non-orthogonal basis functions, which provides a

richer representation of the data compared to the smaller dictionary of orthogonal

basis functions used in the k-t PCA and PSF schemes. The sparsity of the coeffi-

cients ensures that the number of active basis functions at each voxel are considerably

lower than the rank of the dataset. Since the basis functions used at different spatial

locations are different, the BCS scheme can be viewed as a locally low-rank scheme;

the appropriate basis functions (subspace) at each voxel are selected independently.

Since the number of basis functions required at each voxel is considerably lower than

the global rank, the BCS scheme can provide a richer representation with lower de-

grees of freedom; this translates to better trade-offs between accuracy and achievable

acceleration, especially in multi-dimensional MRI applications with inter-frame mo-

tion.
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CHAPTER 3
A VARIABLE SPLITTING BASED ALGORITHM FOR FAST

MULTI-COIL BLIND COMPRESSED SENSING MRI
RECONSTRUCTION

3.1 Introduction

Recently, several researchers have proposed to jointly estimate the sparse rep-

resentations and the dictionaries from the under sampled data at hand. Dictio-

naries containing atoms of one-dimensional non-orthogonal temporal bases [28] or

two-dimensional spatial patches [29] have been proposed for dynamic and static ap-

plications. These schemes termed as blind compressed sensing (BCS) have shown

considerable promise over conventional CS schemes in several MRI applications such

as dynamic contrast enhanced MRI [28], functional lung [30], parametric, and high

resolution static MRI [29].

The BCS scheme is formulated as a constrained optimization problem consist-

ing of linear combination of data fidelity l2 norm, and a sparsity promoting norm on

the coefficients subject to a Frobenius norm constraint on the dictionary. The single

coil BCS algorithmic implementation in [28] relies on iterations between quadratic

update steps of the coefficient and dictionary update steps. These steps were solved

using slow iterative conjugate gradient algorithms due to the complexity in construct-

ing the inverses of the matrices resulting from the data fidelity. The large compu-

tational complexity encountered during the optimization pose a challenge in dealing

with large practical datasets such as multi-coil and three-dimensional applications.
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In this chapter, we propose to employ variable splitting strategies [31] to ef-

ficiently decouple the coefficient update and dictionary update steps from the data

fidelity term. Through the decoupling, we develop a computational efficient algorithm

that efficiently cycles between different steps that have analytical closed form solu-

tions. We demonstrate through experiments on multi coil parametric MRI data, the

proposed algorithm obtains a significant speed up factor of ten fold over the previous

implementation.

3.2 Multi-coil BCS scheme

In multi-dimensional imaging, the k-space corresponds to several images ac-

quired at different values of encoding parameters denoted by d. For example for

multi-parameter mapping applications, multiple contrast weighted images are ac-

quired by varying echo time, spin lock time, flip angle, repetition time depending on

the underlying problem. In case of dynamic imaging applications, multiple images

are acquired as a function of time to image moving organs.

We model the multi-coil undersampled measurement as:

b(k, d) = SFC︸ ︷︷ ︸
A

[γ(x, d)] + n(k, d), (3.1)

where b(k, d) represents the concatenated vector of the k− d measurements from all

the coils. γ(x, d); (x = (x1, y1)) denote the underlying images pertaining to differ-

ent contrasts; n is additive noise. A is the operator that models coil sensitivity C

and Fourier encoding F on a specified k − d sampling trajectory S. The dataset is

represented as M ×N Casoriti matrix [10] ΓM×N
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Figure 3.1: BCS model representation BCS model representation: The model rep-
resentation of the multi-parameter signal of a single brain slice with 24 parametric
measurements (12 TEs and 12 TSLs) is shown above. The signal Γ is decomposed as
a linear combination of Spatial weights ui(x) (x are the spatial locations (pixels)) and
temporal basis functions in vi(d) (d are the parametric measurements). We observe
that only 3-4 coefficients per pixel are sufficient to represent the data. The Frobenius
norm attenuates the insignificant basis functions.

ΓM×N =



γ(r1, d1) . γ(r1, dN )

. . .

. . .

γ(rM , d1) . γ(rM , dN )


(3.2)

where M is the number of voxels in the image and N is the number of encoding

parameters.

3.2.1 Image reconstruction

We model Γ as a product of spatial coefficients UM×R and dictionary VR×N

as shown in Fig. 3.1. The joint recovery of U, V is formulated as a constrained
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optimization problem:

arg min
U,V

‖A(UV)− b‖2F + λ‖U‖`p︸ ︷︷ ︸
C(U,V)

s. t. ‖V‖2F < 1. (3.3)

The first term in Eq. [3.3] ensures data consistency. The second term promotes spar-

sity on the spatial coefficients ui(x) by utilizing a convex `p norm prior on U, which

is given by ‖U‖lp =
(∑M

i=p

∑r
j=1 |u(i, j)|p

)1/p

, 0 < p < 1; and λ is the regulariza-

tion parameter. The optimization problem is constrained by imposing unit Frobenius

norm on the over-complete dictionary V, making the recovery problem well posed.

Note that we are jointly estimating the sparse coefficients U and the subject-specific

dictionary V directly from the under-sampled k − d data. Since the dictionary is

subject-specific, this approach ensures that any deviations from the true parametric

encoding, such as subject motion, field inhomogeneity and chemical shift artifacts,

are learned by the basis functions. The number of active bases at a specified voxel

depends on several factors that include partial volume effects, motion, and magne-

tization disturbances due to inhomogeneity artifacts. The spatial weights ui(x) are

encouraged to be sparse since we expect only a few tissue types to be active at any

specified voxel. The main difference of the proposed scheme from [28] is the use of

an efficient algorithm and the extension to multi-coil formulation with incorporation

of non-convex penalties which enables better recovery at high acceleration rates.

3.2.2 Algorithm 1: Without using variable splitting

We majorize an approximation of the `p penalty on U in Eq. (3.3) as ‖U‖`p ≈

minL
β
2
‖U − L‖2 + ‖L‖`p , where L is an auxiliary variable. This approximation
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becomes exact as β → ∞. We use augmented Lagrangian optimization scheme to

enforce the constraint V = Q, where Q is the auxiliary variable for V. Thus, the

optimization problem is given by

{U∗,V∗} = arg min
U,V

min
Q,L
‖A(UV)− b‖2F +

βλ

2
‖U− L‖2F

+λ‖L‖`p s. t. ‖Q‖2F < 1,V = Q

(3.4)

Here, Q is the auxiliary variable for V. The constraint V = Q is enforced by

adding the augmented Lagrangian term α
2
‖V−Q‖2 + 〈Λ, (V −Q)〉 to the above cost

function. Here, Λ is the Lagrange multiplier term that will enforce the constraint.

These simplifications enable us to decouple the optimization problem in (3.3) into

different sub-problems. We use an alternating strategy to solve for the variables

U,V,Q and L (See Fig. 3.2(a)). All of these sub-problems are solved independently

in an efficient fashion as described below, assuming the other variables to be fixed.

The sub-problems in U and V have the following update steps:

Update on U: The sub-problem on U, assuming the other variables to be fixed, can

be written as

Un+1 = arg min
U

‖A(UnVn)− b‖2
2 +

λβ

2
‖U− Ln+1‖2

2 (3.5)

Since it is a quadratic problem, we solve it using a conjugate gradient (CG) algorithm.

Here, Un, Vn and Ln are the variables at the nth iteration.

Update on V: Minimizing the cost function with respect to V, assuming other vari-
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ables to be constant yields

Vn+1 = ‖A(Un+1Vn)− b‖2
F + < Λn,Vn −Qn+1 > +

α

2
‖Vn−Qn+1‖2

F . (3.6)

Iterative methods like conjugate gradient are required to solve these subprob-

lems due to the enormous size of A. In addition, for the majorization to well approx-

imate the `p penalty, β needs to be a high value. At higher values of β, the condition

number of these subproblems is significantly high resulting in slow convergence as

many iterations of CG are required.

3.3 Algorithm 2 : FastBCS using variable splitting

To improve convergence speed, Ramani and Fessler proposed the use of the

technique of variable splitting to decouple the effect of coil sensitivities C and the

regularization [31]. We introduce a novel optimization algortihm using variable split-

ting technique to accelerate the convergence of Eq. 3.4. First, we decouple the data

fidelity term from sparse coefficients U and dictionary V by introducing a constraint

X = UV where X is the auxiliary variable for UV. The optimization problem is of

the form

arg min
U,V,X

‖SFCX− b‖2F + λ‖U‖`p s. t. X = UV, ‖V‖2F < 1 (3.7)

We further decouple the coil sensitivities from X by introducing another constraint

Z=CX where Z is the auxiliary variable. The constrained optimization problem can
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Figure 3.2: Flowchart of implementations for Algorithm 1 and proposed algorithm
Flowchart of implementations for Algorithm 1 and proposed algorithm: The flowchart
of the implementations for Algorithm 1 and proposed algorithm are shown in (a) and
(b) respectively. The optimization problem in Algorithm 1 is solved by iterating
between the 4 steps for algorithm 1 and 6 steps for proposed algorithm as shown.
However the U and the V update steps use CG method making it slow where all
the 6 sub-problems in proposed algorithm are solved analytically giving the speed up
factor.

be written as

argmin
U,V,X,Z

‖SFZ− b‖2F + λ‖U‖lp s.t. X = UV,

‖V‖2F < 1,Z = CX

(3.8)
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We majorize an approximation of the `p penalty on U in (3.3) as ‖U‖`p ≈ minL
β
2
‖U−

L‖2 + ‖L‖`p , where L is an auxiliary variable. We enforce the constraints in Eq. 3.8

by using an augmented Lagrangian (AL) framework [32]. The associated AL function

is written as

L(U,V,L,Q,X,Z) = ‖SFZ− b‖2F +
βX
2
‖X−UV‖2F

+Λ′X(X−UV) + λ‖L‖`p +
λβU

2
‖U− L‖2F

+
βV
2
‖V −Q‖2F + Λ′V (V −Q)

+
βZ
2
‖Z−CX‖2F + Λ′Z(Z−CX) s. t. ‖Q‖2F < 1

(3.9)

Here Q is the auxiliary variable for V, ΛX ,ΛV and ΛZ are the Lagrange multipliers.

βX , βV , βU and βZ are the penalty parameters. We use an alternating strategy to solve

for the variables U,V,Q,L,X and Z (See Fig. 3.2(b)). All of these subproblems are

solved analytically as described below, by minimizing the Eq. 3.9 with respect to

these variables one at a time assuming the other variables to be fixed.

L subproblem: Ignoring all the terms independent of L, Eq. 3.9 can be written as

arg min
L

λβU
2
‖U− L‖2F + λ‖L‖`p (3.10)

The L subproblem is solved using shrinkage rule as

Ln+1 =
U

|Un|

(
|Un| −

1

β
|Un|p−1

)
+

(3.11)

where ‘+’ represents the soft thresholding operator defined as (τ)+ = max{0, τ} and

βU is the penalty parameter.

U subproblem: The minimization of Eq. 3.9 with respect to U results in a quadratic
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subproblem which has an closed form solution given by

arg min
U

βX
2
‖X−UV‖2F + Λ′X(X−UV) +

λβU
2
‖U− L‖2F (3.12)

The quadratic subproblem can be solved analytically as shown below.

Un+1 = (βXnXnV
′
n + ΛXV′n + λβULn+1)H−1

U (3.13)

HU = βXVnV
′
n + λβUI (3.14)

Q subproblem: The Q subproblem is obtained by minimizing Eq. 3.9 with respect to

Q

arg min
Q

βV
2
‖V −Q‖2F + Λ′V (V −Q) s. t. ‖Q‖2F < 1 (3.15)

The above problem is solved using a projection scheme as specified in Eq. 3.16. If

Frobenius norm of Q is less than unity, we set Q = V, else we scale V to have a unit

Frobenius norm

Qn+1 =


Vn ‖Vn‖2F 6 1

1
‖Vn‖F Vn else

(3.16)

Note that Qn is obtained by scaling Vn so that the Frobenius norm is unity.

V subproblem: The V subproblem is a quadratic subproblem as shown below.

arg min
V

βX
2
‖X−UV‖2F + Λ′X(X−UV)

+
βV
2
‖V −Q‖2F + Λ′V (V −Q)

(3.17)

Minimization of the above equation with respect to V yields the following closed form

solution

Vn+1 = H−1
V (βXU′n+1Xn + U′n+1ΛX + βV Qn+1 −ΛV ) (3.18)

HV = (βXU′n+1Un+1 + βV I) (3.19)
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X subproblem: Dropping all the terms independent of X we get

arg min
X

βX
2
‖X−UV‖2F + Λ′X(X−UV)

+
βZ
2
‖Z−CX‖2F + Λ′Z(Z−CX)

(3.20)

The closed form solution to the above minimization problem is given by

Xn+1 = H−1
X (βXUn+1Vn+1 −ΛX + βZC′Zn + C′ΛZ) (3.21)

HX = βXI + βZC′C (3.22)

Z subproblem: Writing the Eq. 3.9 with respect to Z (ignoring constants independent

of Z) we get,

arg min
Z

‖SFZ− b‖2F +
βZ
2
‖Z−CX‖2F + Λ′Z(Z−CX) (3.23)

This problem is a Fourier domain replacement problem which can be solved analyti-

cally as shown below.

Zn+1 = F′

[(
S +

βZ
2
I

)−1

F

(
βZ
2
CXn+1 −

ΛZ

2
+ F′Sb

)]
(3.24)

We update all the Lagrange multipliers using a steepest ascent method at each

iteration as shown below.

ΛV (n+1) = ΛV n + βV (Vn+1 −Qn+1) (3.25)

ΛX(n+1) = ΛXn + βX (Xn+1 −Un+1Vn+1) (3.26)

ΛZ(n+1) = ΛZn + βZ (Zn+1 −Cn+1X) (3.27)

The optimization algorithm in Eq. 3.8 is solved by cycling between the above sub-

problems. The matrix HU and HV are R × R and can be easily inverted. Since
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C′C is a diagonal, HX matrix is also diagonal and is therefore easily inverted. Split-

ting the k-space and coil sensitivities (F and C components) from UV in the data

fidelity term has led to separate matrix inverses involving F′F and C′C which are

easier to compute. Since, all the steps can be solved analytically, the convergence is

much faster than conventional iterative conjugate gradient steps. Although βX and

βZ parameters do not affect the final solution, they can affect the convergence rate.

These parameters were chosen empirically. Since we use the augmented Lagrangian

framework for enforcing the constraint on the dictionary, it is not necessary for βV

to tend to ∞ for the constraint to hold, allowing faster convergence. The quality of

reconstruction is affected by βU parameters as the non-convex penalty is enforced us-

ing majorization. As discussed earlier, the majorization is only exact when βU →∞.

We initialize βU to a small value and gradually increment it when the cost in Eq. 3.3

stagnates to a threshold level of 10−2.

The pseudo-code of the algorithm is shown below.
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Algorithm 3.3.1: FastBCS(S,F,C,b, λ)

Input : b, βX > 0, βZ > 0, βU > 0

while |Cn − Cn−1| > 10−5 Cn

do



Initialize βV > 0

while |V −Q|2 > 10−5

do



Update L :← Eq.[3.11]

Update U :← Eq.[3.13]

Update Q :← Eq.[3.16]

Update V :← Eq.[3.18]

Update Z :← Eq.[3.24]

Update X :← Eq.[3.21]

Update ΛV :← Eq.[3.25]

Update ΛX :← Eq.[3.26]

Update ΛZ :← Eq.[3.27]

βV = 5 ∗ βV

if |Cn − Cn−1| < 10−2 Cn

then

{
βU = 50 ∗ βU

return (U,V)

3.4 Experimental evaluation

To study the convergence rate of both the algorithms, we acquired a single

slice fully sampled 2D dataset on a Siemens 3T Trio scanner using a turbo spin echo
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(TSE) sequence with turbo factor (TF) of 8, matrix size = 128x128, FOV= 22x22cm2,

TR=2500ms, slice thickness =5mm, B1 spin lock frequency=400Hz, bandwidth=

130Hz/pixel, and echo spacing of 12.2ms. A 12-channel phased array coil was used.

T1ρ preparation pulse [33] and T2 preparation pulse [34] were used prior to readout.

The data was collected for 12 equispaced spin lock times (TSLs) and 12 equispaced

echo times (TEs) values, both ranging from 10 ms to 120 ms. This provided a total

of 24 parametric measurements. The dataset was undersampled using a Cartesian

hybrid sampling pattern (acceleration of 1.5 using pseudo-random variable density

sampling and an acceleration factor of 4 from uniform sampling pattern) giving a net

acceleration of 6. The coil sensitivity maps were obtained using Walsh method for

coil map estimation [35]. Both the algorithms were implemented in MATLAB on a

quad core linux machine.

We compare the performance and convergence speed of both the algorithms

using a Mean square error (MSE) metric given by

MSE =

(
‖Γrecon − Γorig‖2F

‖Γorig‖2F

)
. (3.28)

The regularization parameter λ of both the algorithms was chosen such that the error

between reconstructions and the fully sampled data given by MSE was minimized.

Comparisons were done for the optimal λ value of 0.05.

The reconstruction error vs CPU time is shown in Fig. 3.3(a). It is observed

that proposed algorithm converges to almost the same solution in just 3 min. This

is also demonstrated by the reconstructed images and T1ρ and T2 parameter maps

shown in Fig. 3.4. Every time, when the β in Eq. 3.4 is incremented, the condition
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Figure 3.3: Convergence plots Convergence plots: Reconstruction error vs CPU time
and the cost vs CPU time plots are shown in a) and b) respectively. It is observed
that proposed algorithm converges to same solution in about 3 min where as the
Algorithm 1 takes roughly 40 min to converge. Note the threshold in both algorithms
was set to 10−6

number of the U subproblem increases and the CG algorithm needs many iterations

to converge thus increasing the reconstruction time considerably. This behavior can

be seen in Fig. 3.3(b). In contrast the proposed algorithm takes much lesser time as

it solves the subproblems analytically. The proposed algorithm converges in about

146 secs (≈ 3 min) while the Algorithm 1 takes about 2500 secs (≈ 40 min) resulting

in 10 fold acceleration without much degradation in image quality.

3.5 Conclusion

In this paper , we have demonstrated the usage of simple splitting strategies

to offer significant speed up in synthesis based dictionary learning optimization prob-

lems. We have demonstrated it to show considerable improvement in cases of parallel
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Figure 3.4: Qualitative results Qualitative results: The first row shows reconstructed
images using Direct ifft, Algorithm 1 and the Proposed algorithm in a-c. The second
and the third row show T1ρ and T2 parameter maps for Algorithm 1 and proposed
Algorithm respectively. It is seen that proposed algorithm converges 10 times faster
without degradation in quality as compared to the Algorithm 1

MRI, at least a speed up factor of 10 fold.
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CHAPTER 4
ACCELERATED WHOLE-BRAIN MULTI-PARAMETER MAPPING

USING BLIND COMPRESSED SENSING

4.1 Introduction

In this chapter, we study the utility of multi-coil blind compressed sensing

scheme introduced in the previous chapter to accelerate whole brain T1ρ and T2

multi-parameter mapping. The quantification of multiple tissue parameters from MRI

datasets is emerging as a powerful tool for tissue characterization [36–43]. Parameters

such as proton density, longitudinal and transverse relaxation times (denoted by T1

and T2), relaxation times in the rotating frame (T1ρ and T2ρ ), as well as diffusion have

been shown to be useful in diagnosis of various diseases including cerebral ischemia

[44], Parkinson’s disease [37–39], Alzheimer’s disease [37,40,42], epilepsy [42] multiple

sclerosis [41, 42], edema [43], necrosis [43], liver fibrosis [45], and intervertebral disc

and cartilage degeneration [46–48]. Although a single parameter may be sensitive to

a number of tissue properties of interest, it may not be specific. Acquiring additional

parameters can improve the specificity. The main bottleneck in the routine clinical

use of multi-parameter mapping is the long scan time associated with the acquisition

of MR images with multiple weightings or contrast values. In addition, long scan

times are likely to result in motion induced artifacts in the data.

In a parameter imaging, the k-space data corresponding to different image

contrasts are often sequentially acquired by manipulating the sequence parameters

(e.g. echo time, spin lock duration/amplitude and flip angle). The more the number
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Figure 4.1: T1ρ imaging acquisition T1ρ imaging acquisition: The curve in red shows
the exponential signal whose decay constant is T1ρ. One image is acquired for each of
the TSL values shown by dotted lines. Note: The fully sampled 3D acquisition takes
≈ 160 min while 8 fold undersampled acquisition takes 20 min.

of images along the exponential curve, the better the accuracy in the estimation of the

decay constant. Fig. 4.1 shows an example of the acquisition process for T1ρ imaging.

However, due to the limits in the scan time, there is often a tradeoff between spatial

resolution and accuracy in parameter estimation.

A common approach to reduce the scan time is to limit the number of weighted

images from which the parameters are estimated. However, this approach precludes

the use of multi-exponential fitting methods, limits the accuracy of fits, and restrict

the dynamic range of estimated tissue parameters. Several researchers have proposed
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to accelerate the acquisition of the weighted images using parallel imaging, model-

based compressed sensing, and low-rank signal modeling [10, 20, 23, 49–54]. The use

of parallel imaging alone can only provide moderate acceleration factors [49]. Model-

based compressed sensing methods rely on large dictionaries generated by Bloch equa-

tion simulations of all possible parameter combinations [55]. A challenge associated

with this scheme is its vulnerability to patient motion, mainly because the dictionary

basis functions cannot account for motion induced signal changes. Another problem

with the direct application of this scheme to multi-parameter imaging is the rapid

growth in the size of the dictionaries with the number of parameters, which also re-

sults in increased complexity of the non-linear recovery algorithm. In this context,

methods such as k-t PCA and PSF models that estimate the basis functions from the

measured data itself are more desirable; the basis functions can model motion induced

signal changes and thus provide improved recovery of weighted images [23,56].

The BCS algorithm [28] was inspired by the theoretical work on BCS by Gle-

ichman et al. [57]. The work by Gleichman et. al. considers the same sensing

matrix for all time frames, for simplicity of the derivations. The proposed scheme

uses different sensing matrices for different frames. The experiments in [26,28] clearly

demonstrate the benefit of higher spatial and temporal incoherency offered by this

sampling strategy. In addition, the algorithm used in [57] is fundamentally different

from our setting. The proposed scheme is also motivated by and have similarities

to the partial separable function (PSF) model introduced by Liang et al. [10, 56, 58].

However, there are several key differences between the PSF implementations and the
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proposed scheme. For example, [56] uses the power factorization method to exploit

the low-rank structure of Γ. They jointly estimate U and V by alternating between

two quadratic optimization schemes involving data consistency terms. Our previous

work shows that the BCS scheme provides improved reconstructions than low-rank

methods, including power-factorization [28, 56], mainly because of the richer dictio-

nary and the lower degrees of freedom. Zhao et. al, assumes the data to be low-rank

and pre-estimates the orthogonal basis set V from low resolution data [58]; they then

estimate the coefficients using a sparsity penalty on U. This approach can be seen

as the first step of our iterative algorithm to jointly estimate U and V. Specifically,

the joint estimation of U and V will provide a richer dictionary with non-orthogonal

basis functions, which provide sparser coefficients than the orthogonal basis func-

tions in [58]. This is not unexpected since extensive research in image processing

have shown that over-complete and non-orthogonal dictionaries/frames offer more

compact representations than orthogonal basis sets.

We study the utility of the proposed BCS scheme to simultaneously recover

T1ρ and T2 maps from under-sampled weighted images. We rely on Cartesian sub-

sampling schemes. The proposed scheme yields reasonable estimates from the whole-

brain for eight fold under-sampling over the fully-sampled setup, thereby reducing

the scan time to 20 min.
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4.2 Methods

4.2.1 Data acquisition

To demonstrate the utility of the proposed BCS scheme in recovering T1ρ, T2

and S0 parameters, healthy volunteers were scanned on a Siemens 3T Trio scanner

(Siemens Healthcare, Erlangen, Germany) using a vendor provided 12-channel phased

array coil. Written informed consent was obtained and the study was approved by

the Institutional Review Board. The coil sensitivity maps were obtained using the

Walsh method for coil map estimation [35].

To test the feasibility of the algorithm and to optimize the parameters, we

first acquired a single-slice fully-sampled axial 2D dataset using a turbo spin echo

(TSE) sequence, combined with T1ρ preparatory pulses [33] and T2 preparatory pulses

[34]. Scan parameters were turbo factor (TF) of 8, matrix size = 128x128, FOV=

22x22cm2, TR=2500ms, slice thickness =5mm, B1 spin lock frequency=330Hz, and

bandwidth= 130Hz/pixel. T1ρ and T2 weighted images were obtained by changing

the duration of the T1ρ (referred as spin lock time) and duration of the T2 preparation

pulses (referred as echo time) respectively. The data was collected for 12 equi-spaced

spin lock times (TSLs) and 12 equi-spaced echo times (TEs) values, both ranging from

10 ms to 120 ms. This provided a total of 24 parametric measurements. The scan

time for this dataset was 16 min. Note that five or six spin lock times are sufficient

for T1ρ estimation using a single exponential fit. However, our main motivation is the

future use of this scheme for multi-parametric mapping (e.g. joint imaging of T1ρ, T2,

T1ρ dispersion imaging, as well as time-resolved parametric mapping). The proposed
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scheme will prove very useful in these settings. Moreover, larger number of parametric

images are essential for more sophisticated models such as multi-exponential model

to account for partial volume issues.

To demonstrate the utility of the approach in accelerated 3-D imaging, we

acquired a prospective 3D dataset using a segmented 3D gradient echo sequence based

on the 3D MAPSS approach [59]. Scan parameters were FOV = 22x22x22cm3, matrix

size = 128x128x128, 64 lines/segments, TR/TE=5.6/2.53ms, recovery time=1500ms,

resolution 1.7mm isotropic, bandwidth= 260Hz/pixel, B1 spin lock frequency =330Hz

and constant flip angle=10o. The readout (frequency encode) direction was (kx),

which enabled us to choose an arbitrary sampling pattern. TEs and TSLs of the

T2 and T1ρ preparation pulses were varied uniformly from 10 to 100ms providing 10

measurements of each. Scan time of the prospective 3D dataset was 20 min. To be

consistent with the 2D dataset the phase encoding plane (phase encode, slice encode)

was oriented along the axial (ky − kz) plane. We perform the recovery of each y − z

slice independently.

4.2.2 Optimization & validation of the algorithm using fully sampled 2-D

acquisition

We used the fully sampled 2-D dataset to determine an optimal sampling

pattern, optimize the parameters, and compare with other algorithms.
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Figure 4.2: Choice of sampling trajectories Choice of sampling trajectories: The sam-
pling patterns for a specific frame for the two choices of sampling schemes are shown
in (a) and (b), respectively. The results are shown for an under-sampling factor of 8.
The first sampling scheme (shown in (a)) is a pseudo-random variable density pattern,
while the second sampling scheme (shown in (b)) is a combination of a uniform 2x2
under-sampling pattern and a pseudo-random variable density pattern. The second
column shows one of the weighted images of the reconstructed data using BCS. As
seen from the error images in third column, sampling scheme 2 yields better per-
formance. Note that the sampling patterns are randomized over different parameter
values to increase incoherency.

4.2.2.1 Determination of a sampling scheme

To choose an optimal sampling scheme that will work well with the multi-

channel BCS scheme, we retrospectively under-sample the 2-D dataset using two
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different under-sampling schemes shown in Fig. 4.2(a-b). Both patterns correspond

to an 8 fold under-sampling. Fig. 4.2(a) shows the pseudo-random variable density

trajectory which over-samples the center of k-space. The sampling scheme 2 as shown

in Fig. 4.2(b) is a combination of a 2x2 uniform Cartesian under-sampling pattern

and a pseudo-random variable density pattern as in Fig. 4.2(a). Acceleration factor

of 6,8,10 and 12 were achieved as 4- fold uniform under-sampling and 1.5, 2, 2.5

and 3 fold random variable density under-sampling respectively. The 2x2 uniform

sampling pattern for different frames is randomly integer shifted in the range [x, y] =

[−1, 1]×[−1, 1] as done in [60] to achieve more incoherency. This sampling scheme may

be replaced with Poisson disc sampling [61]. We compare the reconstructions provided

by the proposed algorithm from the dataset under-sampled using both schemes.

4.2.2.2 Details of algorithms & determination of their parameters

We compare the BCS algorithm against compressed sensing (CS) [15] and k-

t principal component analysis (PCA) [23] methods. A training dataset of 10000

exponentials is generated assuming the exponential model in Eq. [4.3] for the CS

scheme. A dictionary of 1000 atoms is learned from the training dataset using k-SVD

algorithm [62]. Specifically, we vary the T2 and T1ρ values from 1ms to 300ms in

steps of 3. The learned dictionary is then optimized for signal approximation with

at most K atoms. The sparsity value K is chosen as 7 based on the model fit with

respect to fully sampled dataset. The dictionary learned from the training phase is

used in the reconstruction. The data is reconstructed using an iterative procedure,
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which iterates between obtaining the K-term estimate of the signal using orthogonal

matching pursuit (OMP) algorithm and minimizing data consistency as described

in [15]. kt-PCA is implemented as a two step approach where the first step is to

estimate the orthogonal basis functions from the training data. The basis functions

are estimated from the center 9x9 grid of the fully-sampled k-space data using PCA.

In the second step, the estimated basis functions are used in reconstruction of the

data. We also compare the BCS algorithm with the kt-PCA method with `1 sparsity

constraint enforced on the coefficients. The algorithms are implemented in MAT-

LAB on a quad core linux machine with a NVDIA Tesla graphical processing unit.

The regularization parameters of all the algorithms were chosen such that the error

between reconstructions and the fully-sampled data specified by

MSE =

(
‖Γrecon − Γorig‖2

F

‖Γorig‖2
F

)
(4.1)

is minimized. We iterate all algorithms until convergence (until the change in the

criterion/cost function is less than a threshold which is 10e-6). With this setting,

kt- PCA takes about 10-15 iterations, kt-PCA with `1 constraint takes 7-8 iterations,

BCS takes 60-70 iterations while CS takes around 100 iterations to converge.

We also compare the BCS and kt-PCA methods for their compression ca-

pabilities. The 2D dataset with and without motion is represented using different

number of basis functions in case of kt-PCA and different regularization parameters

(and equivalently different sparsities) in case of BCS. For BCS model we considered
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dictionary Vus estimated from 6 fold under-sampled data. To determine the model

representation at different compression factors we solved for the model coefficients U

using the following equation:

Ûλ = arg min
U
‖Γ−UVus‖2

2 + λ‖U‖`1 (4.2)

We varied the range of λ and minimized the above problem to control the sparsity

levels of Ûλ, and hence the compression capabilities. A threshold of 0.1 % was applied

on Ûλ to shrink the coefficients that were very small and were not fully decayed to

zero during the above `1 minimization problem. The model approximation error is

given by ‖Γ−UλVus‖2
F .

4.2.2.3 Comparison of the algorithms

We estimate the parameters S0, T1ρ and T2 by fitting the mono-exponential

model

M(p) = S0 . exp

(
−TE(c)

T2

)
. exp

(
−TSL(c)

T1ρ

)
(4.3)

to the reconstructed images on a pixel by pixel basis using a linear least-squares

algorithm.The mean square error (MSE) of the parameter maps obtained from the

BCS, CS and kt-PCA algorithms are compared to the ones obtained from the fully-

sampled data. We mask the reconstructed images before computing the parameter

maps to limit our evaluation of T1ρ, T2 and S0 to the brain tissue.

The performance of the reconstruction scheme at higher acceleration was as-
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sessed by retrospectively under-sampling the dataset at acceleration factors of 6, 8,

10, 12 & 15 using the sampling scheme shown in Fig. 4.2(b). To determine the

robustness of the proposed scheme to motion, we constructed a simulated dataset

with inter-frame motion by adding translational motion resulting in 1 pixel shift and

rotational motion of 1 degree to frames 16-21 of the 2D dataset, out of 24 frames.

The reconstructed images are aligned to compensate for inter frame motion, prior to

fitting. To demonstrate the advantage of acquiring multiple parameters over single

parameter, we compared the T1ρ maps obtained by applying BCS, kt-PCA and CS

schemes on the combined dataset (T1ρ+ T2) and the T1ρ only dataset.

4.2.3 Validation of the BCS algorithm using prospective 3D acquisition

The prospectively under sampled 3-D dataset is recovered using the BCS

scheme. The dataset was under-sampled on a Cartesian grid with a acceleration

factor of R=8 using the under-sampling scheme 2. Each of the 128 slices in the

dataset are recovered independently using BCS. The parameter maps are estimated

from the pixels by fitting the mono-exponential model to the data. The MSE met-

ric could not be used for the 3D experiments as the fully-sampled ground truth was

not available. Hence, we determine the regularization parameter λ using the L-curve

strategy [63].
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Figure 4.3: Comparison of BCS and kt-PCA model representation Comparison of
BCS and kt-PCA model representation: (a) and (b) show the model approximation
error against the number of non-zero coefficients per pixel of BCS and kt-PCA without
and with motion respectively. (c) and (d) show the reconstruction error against the
average number of non-zero model coefficients per pixel of BCS and kt-PCA models
on the 2D dataset without and with motion respectively. We observe that BCS gives
better reconstructions with less number of non-zero model coefficients than kt-PCA
both in case of with and without motion. In other words the degree of freedom of
BCS is less than that of kt-PCA. BCS model gives better compression than kt-PCA
model as seen from (a) & (b). Note: For (a)&(b), the basis functions in case of BCS
were estimated from 6 fold under-sampled data and the basis functions of kt-PCA
were estimated from center of k-space of the fully sampled data.

4.3 Results

4.3.1 Fully sampled 2D acquisition

The comparisons of the two under-sampling patterns at acceleration factor of 8

is shown in Fig. 4.2. The MSE values and the error images in third column show that
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sampling scheme 2 (shown in Fig. 4.2(b)) provides better reconstructions. Sampling

scheme 2 samples outer k-space more than sampling scheme 1 (shown in Fig. 4.2(a)),

which reduces blurring of the high frequency edges. In other words, the sampling

scheme 2 is both randomly and uniformly distributed in k-space making it suitable

for multi-channel compressed sensing applications. The aliasing introduced by the

2x2 uniform grid in sampling scheme 2 is resolved using information from multiple

coils. Using different sampling patterns for different frames increases incoherency and

thus helps in better reconstructions. We use sampling scheme 2 for all the subsequent

experiments.

We demonstrate the choice of the parameters in BCS and k-t PCA schemes

in Fig. 4.3 using 8 fold retrospectively under sampled data. The comparisons were

done in two regimes: one where the subject was still, and one with head motion

during part of the scan. In Fig. 4.3(a)&(b), we show the model approximation

error as a function of number of non-zero coefficients per pixel while representing

the 2D dataset without and with motion for BCS and kt-PCA using learned basis

functions respectively. In case of BCS scheme, the basis functions learned from BCS

reconstruction of 6-fold under-sampled data were used whereas in case of kt-PCA,

basis functions estimated from center k-space of the fully sampled data were used.

We observe that BCS provides better compression capabilities than kt-PCA. In other

words, the model fitting error in BCS is lower with less number of non-zero coefficients

per pixel as compared to kt-PCA. We observe from Fig. 4.3(c)&(d) that the better

signal representation offered by BCS translates to better reconstruction. Specifically,
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the optimal number of non-zero coefficients that yield minimum reconstruction errors

in the kt-PCA model (10 in case without motion and 14 for case with motion) is

considerably higher than that of BCS model (≈4 in case without motion and ≈5 in

case with motion).

In Fig. 4.4, we compare the performance of BCS against k-t PCA scheme

with and without sparsity constraint and CS schemes for different acceleration factors

without motion (right) and in the presence of motion (left). We observe that BCS

is capable of providing reconstructions with lower errors, compared with CS and k-t

PCA schemes with and without sparsity constraint. The better performance of BCS

in cases without and with motion can be attributed to the richer dictionary and lower

degrees of freedom over other methods.

The `1 norm on the coefficients and Frobenius norm constraint on the dictio-

nary attenuate the insignificant basis functions which model the artifacts and noise as

shown in Fig. 4.5(a) and thereby minimize noise amplification. In contrast, since the

model order (number of non-zero coefficients) in kt-PCA without sparsity constraint

is fixed a priori, basis functions modeling noise are also learned, especially in the case

with motion. This is demonstrated in Fig. 4.5(c). Imposing a sparsity constraint on

U in kt-PCA method improves the results over kt-PCA without regularization. This

scheme can be seen as the first iteration of the BCS scheme. The results in the paper

clearly demonstrate the benefit in re-estimating the basis functions. Specifically, the

BCS scheme enables the learning of non-orthogonal basis functions, which provide

sparser coefficients. The CS method on the other hand exhibited motion artifacts as
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Figure 4.4: Comparison of the proposed BCS scheme with different reconstruction
schemes on retrospectively under-sampled 2D dataset Comparison of the proposed
BCS scheme with different reconstruction schemes on retrospectively under-sampled
2D dataset: The results for dataset without and with motion are shown in (i) and
(ii) respectively. The plots for reconstruction error, S0 map error, T1ρ map error
and T2 map error for BCS, CS, kt-PCA and kt-CPA with `1 sparsity schemes are
shown in (a-d). It is observed that the BCS scheme provides better recovery in both
cases. The images in (g-j) show one weighted image of the reconstructed dataset at
acceleration factor of 8 using the 4 different schemes. We observe that the CS and
kt-PCA schemes were sensitive to motion and resulted in spatial blurring as seen in
(ii)- (h-j), which is also evident from the error images.
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Figure 4.6: T1ρ and T2 parameter maps for retrospectively under-sampled 2D dataset
T1ρ and T2 parameter maps for retrospectively under-sampled 2D dataset: The T1ρ
and T2 parameter maps obtained using BCS, CS and kt-PCA schemes on the 2D
dataset with and without motion are shown in (i) and (ii) respectively. The maps are
obtained at acceleration factor of 8. We observe that BCS scheme performs better
than CS and kt-PCA schemes in both cases with and without motion. The noise in
reconstructions using the kt-PCA and CS schemes propagates to the parameter maps
and hence the degradation is higher in case of kt-PCA and CS as compared to BCS.

the dictionary is learned from the data model which does not contain signal prototypes

that account for patient-specific motion fluctuations. The comparison of T1ρ and T2
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Figure 4.7: Parameter maps of a retrospectively under-sampled 2D dataset at dif-
ferent acceleration factors Parameter maps of a retrospectively under-sampled 2D
dataset at different acceleration factors: S0, T1ρ and T2 parameter maps (a-c) at
acceleration factors R=1, 6, 8, 10, 12 and, 15 are shown in (i-vi). We observe rea-
sonable reconstructions for acceleration factors up to 15 with minimal degradation in
contrast.

parameter maps at acceleration factor of 8 are shown in Fig. 4.6. We observe that

BCS provides superior reconstructions which translate into better parameter maps

as compared to other two schemes in both with and without motion datasets. Fig.

4.7 shows the parameter maps for different acceleration factors. Acceleration factors

up to 15 were achieved with minimal degradation. All the schemes yield better T1ρ

maps in case of the combined (T1ρ+T2) dataset as compared to the only T1ρ dataset

as seen in Fig. 4.8. In addition, we observe that BCS gives better performance than
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Figure 4.8: Comparison of T1ρ maps errors obtained from reconstructions of combined
(T1ρ+T2) dataset and the T1ρ only dataset Comparison of T1ρ maps errors obtained
from reconstructions of combined (T1ρ + T2) dataset and the T1ρ only dataset: The
T1ρ maps errors at different accelerations for all the schemes on the combined dataset
(solid lines) and only T1ρ dataset (dotted lines) are shown. The plot on left shows
comparisons for the datasets without any motion and the plot on the right shows
comparisons for datasets with motion. We observe in both cases that BCS performs
better than CS and kt-PCA schemes. In other words combining the datasets improves
the reconstructions.

other schemes, thus confirming that combining T1ρ and T2 datasets does not affect

the reconstructions, instead it enables to achieve higher acceleration and improves

the specificity of T1ρ.

4.3.2 Prospective 3D acquisition

The optimal regularization parameter is chosen using the L- curve method as

shown in Fig. 4.9. The λ value of 0.07 is then used to recover all the slices. The
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Figure 4.9: Choice of regularization parameter λ Choice of regularization parameter
λ: The λ parameter was optimized using the L- curve strategy [63]. We change λ and
plot the data consistency error against the smoothness penalty. λ value of 0.07 was
chosen as the regularizing parameter for the 3D dataset.

parameter maps for the prospectively under-sampled 3D dataset recovered using the

BCS scheme are shown in Fig. 4.10. We observe that the computation time for

the 3D dataset using CG based algorithm 1 was >50 hours which is 10 times higher

than the computation time using the variable splitting based algorithm. These results

demonstrate that the BCS scheme yields good parameter maps with reasonable image

quality in both cases. The acceleration factor of R=8 enables us to obtain reliable
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Figure 4.10: Parameter maps for 3D prospective under-sampled data at R=8 Pa-
rameter maps for 3D prospective under-sampled data at R=8: Axial, Coronal and
Sagittal T1ρ and T2 parameter maps estimated using reconstructions using Algorithm
1 (left) and proposed algorithm (right) are shown. With the acceleration of R=8, the
scan time was reduced to 20 min. We observe that the proposed algorithm has a 10
fold speed up in computation time over the CG based algorithm 1 while maintaining
same image quality. Note: All 128 slices were processed slice by slice to reconstruct
the 3D parameter maps

T1ρ, T2 and S0 estimates from the entire brain within a reasonable scan time (20 min).

4.4 Discussion

We have introduced a blind compressed sensing framework to accelerate multi-

parameter mapping of the brain. The fundamental difference between CS schemes and

the proposed framework is that BCS learns a dictionary to represent the signal, along

with the sparse coefficients from the under-sampled data. This approach enables the

proposed scheme to account for motion-induced signal variations. Since the number

of different tissue types in the specimen is finite, this approach also enables use of

smaller dictionaries, resulting in a computationally efficient algorithm. The main
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difference of the proposed scheme vs. k-t PCA scheme is the non-orthogonality of the

basis functions and the sparsity of the coefficients. The richer model and the fewer

degrees of freedom due to the sparsity of the coefficients translate to lower artifacts

at high acceleration factors.

Since the kt-PCA basis functions are estimated from the center 9x9 kspace of

the fully sampled data, it does not exploit the redundancy due to parallel MRI. The

kt-PCA performance may be further improved by a pre-reconstruction step, where

the missing k-space data is interpolated from the known samples using GRAPPA

[64] or SPIRiT [65], prior to estimating the basis functions. However, no such pre-

reconstruction is necessary in BCS since the dictionary is updated iteratively with

the coefficients in the reconstruction process. The kt-PCA reconstructions, specially

in presence of motion can be improved by using the model consistency condition

(MOCCO) technique [66] introduced recently. Such a model consistency relaxation

could also be realized with the BCS model, which is yet to explored.

Our comparisons with kt-PCA and CS schemes in the case of subjects ex-

periencing head motion shows that BCS is more robust to motion. This behavior

can be attributed to the ability of the BCS scheme to learn complex basis functions

that capture the motion-induced signal variations. The ability to be robust to mo-

tion induced signal variations is especially important in high-resolution whole-brain

parameter mapping experiments, where the acquisition time can be significant.

Based on our work that combined low-rank and spatial smoothness priors [26],

we observed that the use of spatial smoothness priors along with low-rank priors as
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in Zhao et. al, ISMRM, 2012 can provide better reconstructions. While spatial

smoothness priors can be additionally included with BCS to improve performance,

this is beyond the scope of this paper.

Recently, a new scheme was proposed for accelerating T1ρ mapping which

learns the dictionary from the principal component coefficients [67]. The k-SVD al-

gorithm [62] is used to update the dictionary and the sparse representation. We had

compared our BCS formulation with a similar scheme which used K-SVD algorithm

to update the dictionary in the context of dynamic imaging [28]. The comparisons

revealed that the k-SVD scheme is highly sensitive to local minima compared to the

proposed scheme. The sensitivity can be attributed to the greedy nature of the k-SVD

algorithm and the absence of continuation schemes. Another drawback of the k-SVD

algorithm in the under-sampled setting is the likelihood of the dictionary atoms learn-

ing alias patterns at high acceleration factors [28]. The unit Frobenius norm constraint

in our algorithm provides an implicit model order selection, thereby attenuating in-

significant basis functions, unlike the unit column norm dictionary constraints used by

k-SVD. The proposed algorithm is also considerably more computationally efficient

than the alternating k-SVD method.

The proposed method can only compensate for inter-frame motion. We correct

for the motion using registration of the images in the time series, prior to estimation

of the parameter maps. An alternative to this approach is the joint estimation of

motion and the low-rank dataset as in [68]. The improvement in the results comes

from superior reconstruction of the image series, which translates into good quality
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parameter maps.

The quality of the reconstructions depends on the regularization parameter

λ. We used the L-curve method to optimize λ. We observed that the value of λ did

not vary much across different datasets acquired with the same protocol. Therefore,

in the practical setting, once the λ is tuned for one dataset, it could be used to

recover other datasets that are acquired using the same protocol. In order for the

majorize-minimize algorithm to converge, β should tend to infinity, and convergence

of the algorithm is slow at higher values of β. Thus the continuation method plays a

significant role in providing faster convergence. Currently, the reconstruction time for

one slice is about 40 min on the GPU. We observed that the CG steps required to solve

the quadratic sub-problems are time consuming. These CG steps can be avoided by

additional variable splitting in the data consistency term as shown in [31, 69], which

is a subject of further investigation.

The proposed scheme can be extended in several directions. First, in the

current setting, we reconstruct the 3D data slice by slice, but the algorithm can

be further modified to reconstruct the entire 3D data at once, thus exploiting the

redundancies across slices. However, this will be computationally expensive. Second,

additional constraints such as total variation penalty on the coefficients and sparsity

of the basis functions [70] can be added to further improve the results. Third, spatial

patches can be used to construct dictionaries to exploit the redundancies in the spatial

domain [71,72]. Lastly, we use a single exponential model to estimate the parameter

maps. However several other models like multi-exponential model [73] which will
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accommodate for partial volume effects or a Bloch equation simulation based approach

can be used for parameter fitting. Since, these extensions are beyond the scope of

this paper, we plan to investigate these in future.

4.5 Conclusion

We introduced a blind compressed sensing framework, which learns an over-

complete dictionary and sparse coefficients from under-sampled data, to accelerate

MR multi-parameter brain mapping. The proposed scheme yields reasonable param-

eter estimates at high acceleration factors, thereby considerably reducing scan time.

The robustness of the BCS scheme to motion makes it well suited for multi-parameter

mapping in a setting with high probability of patient-specific motion or in a dynamic

setting like in cardiac applications.
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CHAPTER 5
BLIND COMPRESSED SENSING ENABLES 3D DYNAMIC FREE

BREATHING MR IMAGING OF LUNG VOLUMES AND
DIAPHRAGM MOTION

5.1 Introduction

In this chapter, we study the clinical utility of the BCS scheme to enable

free breathing lung MRI with full lung coverage. Dynamic imaging of respiratory

mechanics plays an important role in the diagnosis of abnormalities to the active

and passive components involved in respiratory pumping, including diaphragm pare-

sis or paralysis, abnormal chest wall mechanics, and muscle weakness, which are a

result of neuromuscular, pulmonary, or obesity related disorders [74, 75]. Clinically,

these impaired respiratory mechanics are evaluated indirectly by respiratory induc-

tive plethysmography, spirometry or magnetometer [76]. While these schemes can

be collected with very high temporal resolution, they lack spatial information and

hence can only detect global changes which occur only during the advanced stages

of the disease [77]. Early detection and localization of the disease is very crucial for

treatment planning.

Magnetic resonance imaging is gaining popularity over the above techniques

because it provides a non-invasive and direct visualization of dynamic changes in

diaphragm and chest wall [78–81] positions, without exposure to ionizing radiation.

The evaluation of dynamic changes in lung volumes and diaphragm movement requires

high spatial and temporal resolution, plus high volume coverage to cover the entire
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thorax. Achieving entire volume coverage is especially challenging in obese subjects

who are at a high risk for impaired diaphragm movement. The respiratory rate

during tidal breathing is 12-16 cycles per min ( 5 sec per cycle), while the normal

respiratory excursion of the diaphragmatic dome is about 1.5 cm [82]. The speed

of the diaphragm is about 0.3 cm/sec. Thus considering a pixel size of 3 x 3 mm,

the diaphragm position changes at a rate of 1 pixel/sec. To avoid motion-blurring,

imaging time should be much shorter than 1 sec. While 2D imaging techniques can

offer high temporal resolution, it is challenging to merge the information from multiple

2D slices for 3D visualization of the diaphragmatic dome and volume measurements

because of the irregular nature of respiratory motion in most subjects.

Research has shown that three dimensional dynamic MRI (3D-DMRI) is a

more suitable option to analyze respiratory mechanics [80, 83, 84] and is reported to

have higher correlation with spirometry measurements than 2D-DMRI [85]. However,

current 3D-DMRI implementations offer limited temporal/spatial resolution and vol-

ume coverage. While improved resolution and coverage may be achieved by acquiring

3D volumes at multiple breath-holds, this approach does not provide good estimates of

respiratory dynamics or account for the hysteresis effect that the lung exhibits during

normal breathing [74, 80, 82]. Furthermore, subjects with chronic obstructive pul-

monary disease (COPD) have difficulty holding their breath making motion analysis

difficult. Fast imaging techniques were introduced for 3D DMRI [85–87] but current

schemes still compromise on either spatial resolution or the temporal resolution. For

example, echo-planar imaging (EPI) based sequences provide a temporal resolution of
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330ms/frame, but can only achieve low spatial resolution [87] and partial lung cover-

age. Similarly, 3D fast low-angle shot (FLASH) sequences with Cartesian undersam-

pling, view-sharing, and parallel imaging was used to obtain whole lung coverage [85],

at the expense of a poor temporal resolution of 1 second; these schemes can only be

used to image the dynamics during slow and controlled breathing conditions, which

limits the flexibility of experimental paradigms. More recently, higher spatiotem-

poral resolution was reported using a 128 channel coil array [88] with a Cartesian

3D-FLASH sequence and auto-calibrated parallel acquisition (GRAPPA) [64]. How-

ever, these custom-made 128 channel coils are not widely available which restricts the

widespread utility of this scheme.

The main focus of this chapter is to evaluate the feasibility of blind compressed

sensing (BCS) scheme, coupled with 3D stack of stars based golden angle radial

trajectories, to enable the dynamic imaging of lung volumes and the diaphragm,

with full coverage of the thorax, at the spatial and temporal resolution needed to

image tidal breathing. We compare the BCS scheme against other state of the art

compressed sensing schemes that model the voxel profiles such as nuclear minimization

based low rank reconstruction, `1 Fourier sparsity based regularization [26,89–91] and

the commonly used view-sharing reconstruction. We have two expert radiologists

quantitatively score the reconstructions from all the schemes on a four-point scale to

assess the diagnostic image quality.
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5.2 Materials and methods

5.2.1 Image acquisition

The institutional review board at the local institution approved all the in-vivo

acquisitions. All the volunteers were fully informed of the nature of the procedure

and written consent was obtained. The subjects were scanned on the Siemens 3T

Trio scanner (Siemens AG, Healthcare sector, Erlangen, Germany) with a 32-channel

body array coil.

Retrospectively undersampled 2D acquisition: A fully sampled 2D dynamic

dataset was collected on a normal subject using a gradient recalled echo (GRE) se-

quence with uniform radial sampling pattern. The sequence parameters were FOV:

350 × 350mm2, slice thickness: 10mm, TR/TE: 2.67/1.17ms, and matrix size: 128 ×

128. The spatial resolution was 2.7 × 2.7 × 10mm3. 180 frames were acquired with

256 radial spokes per frame, which resulted in a temporal resolution of 683ms.

Prospective 3D acquisition: 8 healthy volunteers (5 males and 3 females; me-

dian age: 28) without any evidence of pulmonary disease were included in this study.

The 3D dynamic data was collected using a FLASH sequence with a 3D radial stack of

stars trajectory as shown in Fig. 5.1 The 3D acquisition uses a golden angle radial tra-

jectory in the axial plane (kx, ky) combined with a conventional phase encoding step

in the kz direction. The radial spokes were separated by the golden angle (111.250)

to achieve incoherent sampling. The sequence parameters for 6 of the 8 datasets

are: FOV= 350 × 350mm2, TR/TE= 2.37ms/0.92ms, partial Fourier factor: 6/8,

base matrix size: 128 × 128, and spatial resolution: 2.7 × 2.7 ×10mm3. A total of
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3500 radial spokes were acquired per slice and a total of 16 slices were acquired to

obtain whole lung coverage. The data was binned by considering 16 radial spokes

per frame resulting in a temporal resolution of 492.96 ms/frame. The coil sensitivity

profiles were estimated using an Eigen decomposition method [35]. The 7th dataset

was acquired with a larger FOV: 400 × 400mm2 that resulted in slightly lower spatial

resolution of 3.1 × 3.1 × 10mm3. All the other scan parameters were the same as pre-

vious acquisitions. Two datasets were collected from the 8th subject, one while free

breathing and one while breathing from functional residual capacity (FRC) to total

lung capacity (TLC). The scan parameters for these two datasets were FOV= 350 ×

350mm2, TR/TE= 2.37ms/0.92ms, base matrix size: 128 × 128, spatial resolution:

2.7 × 2.7 × 10mm3. A total of 18 slices were acquired with 3500 radial spokes per

slice. 16 radial spokes were binned for each frame, which gave a temporal resolution

of 683 ms for these two datasets. The scan time for each of these datasets was less

than 2 min.

5.2.2 Image reconstruction

In this work, we pre-interpolated the radial data points on a Cartesian grid

points that were within 0.5 unit of the measured sample using linear interpolation.

A similar pre-interpolation step is used in constrained reconstruction algorithms for

other body part applications [19, 28, 89]. The pre-interpolation was done for all the

schemes. This enabled us to use fast Fourier transforms (FFTs) and inverse FFTs in

the forward and backward models of the algorithm. There was no noticeable change
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Figure 5.1: 3D golden angle radial stack of stars acquisition 3D golden angle radial
stack of stars acquisition: The figure shows the 3D golden angle stack of stars trajec-
tory. The 1st radial spoke is acquired for each slice, then the 2nd spoke is acquired
for all slices followed by the third and so on. Each of the spokes are separated by the
golden angle of 111.250 from the previous one. Note: The sampling pattern is the
same for all the slices.

in the quality of reconstructions obtained from pre-interpolated data as compared to

the ones obtained from non-Cartesian data with non-uniform data with non-uniform

FFTs (NUFFTs) and INUFFTs.

5.2.2.1 Schemes under comparison

The goal of the reconstruction schemes is to recover the dynamic dataset Γ

from its undersampled measurements. Here, Γ is an M ×N Casorati matrix, where

M is number of voxels in a single time frame and N is number of time frames. In

other words, the columns of Γ represent the signal at every voxel. The measurements
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are modeled as follows:

bi = A(Γ) + ni ; i = 1, ..., N (5.1)

where bi is the undersampled measurement and ni is the noise for the ith time frame.

Ai = SiFC, where Si is the undersampling mask, F is Fourier operator and C are

the coil sensitivities. The least squares reconstruction problem can be posed as:

Γ∗ = arg min
Γ
‖A(Γ)− b‖2

F︸ ︷︷ ︸
Data consistency term

(5.2)

The compressed sensing schemes considered in this paper enforce different priors on

the temporal profiles of the data to make the problem well posed. We discuss each of

the schemes in detail below.

• Low rank recovery using nuclear norm minimization [26, 90, 91]: This scheme

assumes that the temporal profiles of pixels lie in a low dimensional space.

Fig. 5.2(a) reveals the low rank structure of the data where the singular values

rapidly decay to zero. The problem is formulated as a convex optimization

problem given below:

Γ∗ = arg min
Γ
‖A(Γ)− b‖2

F︸ ︷︷ ︸
Data consistency term

+ λ‖Γ‖∗︸ ︷︷ ︸
Nuclear norm

(5.3)

where λ is the regularization parameter. The nuclear norm, which is a convex

relaxation of the matrix rank, is defined as ‖Γ‖∗ =
∑minM,N

i=1 σi, where σi are
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Figure 5.2: Illustration of the data representation in different transform domains
Illustration of the data representation in different transform domains: The nuclear
norm minimization scheme, the �1 Fourier sparsity regularization scheme, and the
BCS scheme relies on constrained modeling of the intensity profiles of the voxels,
specified by Γ = UV . The nuclear norm minimization scheme capitalizes on the
efficient representation of the voxel profiles using few basis functions. The coefficients
in U, along with the singular values are shown in a. The singular values of the
data (Γ) decay rapidly to zero indicating that the data can be represented efficiently
using few basis functions. The pseudo-periodicity of the data is exploited by �1
Fourier sparsity regularization scheme, using the sparse representation of the intensity
profiles in the temporal Fourier transform (x-f space) as seen in b. Figure c shows
the sparse coefficients obtained from the BCS scheme. BCS, similar to nuclear norm
minimization scheme, learns the dictionary of the basis functions from the data itself,
thus adapting to the dynamic content of the time series. The adaptation of the
dictionary to the signal provides sparser representations, which in turn translates to
improved reconstructions.
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the singular values of Γ. The nuclear norm minimization scheme can be viewed

as a direct alternative to classical two step low rank [10] schemes, which pre-

learn the temporal basis functions from navigator data and use these functions

to estimate the basis images.

• `1 Fourier sparsity regularization : This scheme exploits the sparsity of the data

in the Fourier transform domain along the temporal dimension (x-f space) (see

Fig. 5.2(b)). The convex optimization problem is formulated as:

Γ∗ = arg min
Γ
‖A(Γ)− b‖2

F︸ ︷︷ ︸
Data consistency term

+ λ‖Ft(Γ)‖l1︸ ︷︷ ︸
temporal Fourier sparsity

(5.4)

where Ft is the Fourier transform in the temporal direction. The `1 norm in

the second term enforces sparsity on the Fourier coefficients along the tempo-

ral dimension. This approach is a widely used scheme and has similarities to

k-t SPARSE [21, 92] and k-t FOCUSS [20, 93] schemes, while the specific algo-

rithms used to solve them are different from our implementation. The recovery

implicitly assumes that the intensity profiles of the voxels are sparse linear com-

binations of Fourier exponentials.

• Blind compressed sensing (BCS) [5, 28]: The temporal profile for each pixel is

modeled as a sparse linear combination of a atoms from a learned dictionary.

Since the dictionary that is learned from the undersampled measurements is sub-

ject specific, not necessarily orthogonal and may be over-complete, it provides

a richer representation of the data. The sparsity enforced on the dictionary co-
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efficients suggests that very few temporal basis functions are sufficient to model

the temporal profiles at any pixel. This results in lower degrees of freedom and

hence minimizes artifacts at high acceleration factors. The data Γ is modeled

as a product of the sparse coefficient matrix U and dictionary V as shown in

Fig. 5.3. The signal recovery from undersampled measurements is posed as a

constrained optimization algorithm as shown below:

[U∗,V∗] = arg min
U,V
‖A(UV)− b‖2

F︸ ︷︷ ︸
Data consistency term

+ λ‖U‖l1︸ ︷︷ ︸
Sparsity on spatial weights

such that ‖V‖2
F < 1

(5.5)

The second term is the sparsity promoting `1 norm on the coefficient matrix U.

The optimization problem is constrained by imposing unit Frobenius norm on

the over-complete dictionary V, which makes the recovery problem well posed

and avoids scale ambiguity issues. Our experiments [28] show that the joint

estimation of the basis functions and its coefficients from a golden angle radial

trajectory is well-posed, thanks to the oversampling of center of k-space offered

by radial trajectories.

• View-sharing: In this scheme, each frame of the dataset is reconstructed by

combining information from a few adjacent frames. For this study we combined

200 radial spokes to reconstruct each frame with a step size of 16 to match the

temporal resolution with other reconstruction schemes.
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Figure 5.3: BCS model representation BCS model representation: The underlying
signal is represented as a sparse linear combination of basis functions from a learnt
dictionary V. Here the Casorati matrix Γ is represented as product of spatial coeffi-
cients U and the learnt dictionary V

5.2.2.2 Implementation of constrained algorithms

All the above constrained algorithms are implemented using alternating mini-

mization algorithms; these schemes alternate between (a) a backward mapping from

k-space to image space to enforce data consistency, and (b) a projection step, which

is a shrinkage or projection operator. These algorithms are guaranteed to converge

to the global minimum of the cost function, provided it is convex (nuclear norm and

Fourier sparsity regularization, specified by Eq. (5.3) and (5.4), respectively). Due

to non-linear nature of the above algorithms, coupled with a non-uniform k-space

sampling, it is complex to analyze the spatial and temporal smoothing behavior of

the algorithms. However, the projection step provides useful insights on how each of

these schemes removes the aliasing patterns that results from the undersampling. We

perform a brief analysis of the constrained algorithms to obtain more insights of the
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tradeoffs involved in accelerating using these schemes in the appendix A.

The discussion in appendix A shows constrained schemes that model the tem-

poral profiles reduce aliasing artifacts by non-local view-sharing. Specifically, they

recover each pixel in the dataset as a weighted linear combination of other pixels

in the dataset, possibly distant from it in time. Note that this approach is drasti-

cally different from classical view-sharing schemes that combine the data from nearby

frames to recover each frame; we term such classical view-sharing schemes as local

to differentiate them from the non-local ones discussed above. Non-local averaging

combines information from images in similar respiratory phases that are distant in

time thus minimizing the temporal blurring introduced by local view-sharing schemes,

while achieving good suppression of noise-like aliasing artifacts. The analysis shows

that the BCS and `1 Fourier sparsity regularization schemes perform spatially varying

non-local view-sharing, while the nuclear norm minimization scheme performs space

invariant non-local view-sharing. The adaptation of the view-sharing strategy with

the spatial location enables BCS and `1 Fourier sparsity regularization to achieve

improved denoising performance.

5.2.2.3 Experiment details

The fully sampled dataset (acquired with 256 radial spokes) was retrospec-

tively undersampled using 16 radial spokes per frame, corresponding to an accelera-

tion factor of 8. This retrospectively undersampled dataset was reconstructed with

the above mentioned nuclear norm minimization scheme, `1 Fourier sparsity regu-
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larization scheme, BCS, and standard view-sharing scheme. The reconstructed data

was compared to the fully sampled acquisition. To study the performance of the BCS

scheme as a function of acceleration, the 2D dataset undersampled using 20, 16, 12

and 10 radial spokes corresponding to acceleration factors of 6.4, 8, 10.2 and 12.8,

respectively, was reconstructed using the BCS scheme. The slice-by-slice reconstruc-

tion was performed for all the 3D DMRI datasets using the above-mentioned schemes.

All the reconstructions were performed in MATLAB on a desktop computer (Intel

Xeon E5-1620 with 8 core CPUs, 3.6GHz processor and 32 GB RAM) with a 5.6 GB

NVDIA graphical processing unit (GPU).

5.2.3 Image quality analysis

To compare reconstructions, we used the following metrics:

• Mean square error (MSE) :

In the 2D experiments, the fully sampled ground truth data was used as ref-

erence to calculate the reconstruction errors. The optimal regularization pa-

rameter λ was chosen such that the error between reconstructions and the fully

sampled data specified by

MSE =
‖Γrecon − Γorig‖2

F

‖Γorig‖2
F

(5.6)

was minimized. However, the MSE metric could not be used for the 3D experi-

ments, as the fully sampled ground truth was not available. Hence to optimize
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for λ, we used the L-curve strategy [63].

• Normalized high frequency error metric (HFEN):

The HFEN metric [29] gives a measure of spatial blurring of the image and the

quality of fine features and edges. The HFEN metric is defined as:

HFEN =
1

N

N∑
i=1

(
‖LoG(Γref,i)− LoG(Γrecon,i)‖2

2

‖LoG(Γref,i)‖2
2

)
(5.7)

where N is the number of pixels in the image and LoG is the Laplacian of the

Gaussian filter that captures edges. The filter specifications are: kernel size

15 × 15 pixels, with a standard deviation of 1.5 pixels [29]. The regularization

parameters for all the schemes were optimized using the HFEN and MSE values

in case of 2D experiments.

• Qualitative evaluation: clinical scoring

Each of the 3D dynamic reconstructions was evaluated for spatial resolution,

temporal resolution and artifacts by two expert cardiothoracic radiologists us-

ing a four-point scale (4-Outstanding Diagnostic Quality, 3- Good Diagnostic

Quality, 2- Average Diagnostic Quality, 1- Limited Diagnostic Quality and 0-

un-interpretable). The image data sets were viewed using OsiriX.

5.2.4 Image post-processing to demonstrate the utility of 3D DMRI

To demonstrate the potential applications, the lung was segmented using a

region-growing algorithm implemented in MATLAB after reconstructing the 3D dy-
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namic data using the BCS scheme, the nuclear norm minimization scheme and the

`1 Fourier sparsity regularization scheme. This analysis was done for the dataset

collected with the tidal breathing maneuver on subject 8. The analysis was repeated

for the same subject with deep breathing maneuver using the BCS reconstructed

data. The lung volume was calculated in terms of the number of pixels within the

lung region. The velocity maps of the diaphragm were obtained using optical flow

method [94], which was implemented using a multi-scale approach.

5.3 Results

Dynamic 2D experiments: The performance of all the schemes was first evaluated by

retrospectively undersampling a 2D fully sampled dataset. Fig. 5.4 shows a spatial

frame from the dynamic 2D dataset (top row), the corresponding error images (mid-

dle row), and the time profile at a cross-section shown by the yellow line in spatial

frame (last row). The columns correspond to the fully sampled dataset (first column)

and the different reconstructions from retrospectively undersampled data. All the

comparisons were done at an undersampling factor of 8 (using 16 radial spokes per

frame). We observe that the reconstructions from the nuclear norm minimization

and `1 Fourier sparsity regularization schemes suffer from spatio-temporal blurring,

especially along the diaphragm borders, as indicated by the arrows in the error im-

ages. The local view-sharing scheme combines information from adjacent frames (13

adjacent frames were combined for reconstruction of each frame), which results in

significant blurring of the respiratory motion as seen from the time profiles. The BCS
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Figure 5.4: Comparison of different schemes on 2D fully sampled dataset Comparison
of different schemes on 2D fully sampled dataset: The figure shows comparison of
reconstructions obtained from view-sharing, nuclear norm minimization scheme, �1
Fourier sparsity regularization scheme, and BCS schemes with the fully sampled data.
The top row shows a single frame for each of the schemes. The middle row shows
the error images with respect to the fully sampled data and the last row shows the
time profiles all the schemes at a cross section shown by the yellow dotted line. From
the mean square errors (MSE) and the HFEN metric, we observe that BCS gives
superior performance than other schemes. All the schemes except BCS suffer from
spatio-temporal blurring as shown by the yellow arrows in the error images and time
profiles.

scheme has the lowest MSE errors (0.0232) and HFEN values (0.133), which indicates

superior reconstruction and less spatio-temporal blurring as compared to the other

schemes.

Fig. 5.5 shows the comparisons of the reconstructions from 20, 16, 12 and

10 radial spokes per frame with the fully sampled data. We observe that BCS gives
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Figure 5.5: Performance of the BCS scheme at different acceleration factors Perfor-
mance of the BCS scheme at different acceleration factors: The figure shows the single
frame (row 1), the time profiles (row 2) and the corresponding error images (row 3-4)
of reconstructions obtained by retrospectively undersampling the dataset with 20, 16,
12, and 10 radial spokes per frames resulting in acceleration factors (R) of 6.4, 8, 10.2,
and 12.8 respectively. Reliable reconstructions are achieved up to R=8. Beyond R=8
we begin to observe temporal blurring as shown by the arrows in the error images.
Note: All the images are in same scale.

reliable reconstructions with 20 and 16 radial spokes per frame. A reconstruction

from 12 or 10 radial spokes results in temporal blurring as shown by the arrows. In

the 3D experiments, we fixed the number of radial spokes per frame to 16 for all the

schemes.

Dynamic 3D experiments: Fig. 5.6 shows the comparisons of the four schemes for two
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Figure 5.6: Comparison of different schemes on dynamic 3D free breathing Compari-
son of different schemes on dynamic 3D free breathing: The figure shows comparison
between view-sharing, nuclear norm minimization scheme, �1 Fourier sparsity regu-
larization scheme and BCS scheme (Rows 1-4) for 4 of the 16 slices on subject 2. We
observe that the BCS gives better reconstructions than other schemes. It is seen that
BCS shows superior spatio-temporal fidelity in comparison to the other schemes (see
yellow arrows).

subjects. The figures show a single frame and a time profile along the cross section for

4 of the 16 slices. We observe that the local view-sharing scheme suffers from temporal

blurring and aliasing artifacts. The nuclear norm minimization scheme provides better

reconstructions than view-sharing, but it exhibits more spatio-temporal blurring than

the BCS reconstructions as shown by the arrows. Reconstructions from both the �1

Fourier sparsity regularization scheme and the BCS scheme show comparable image

quality in the spatial domain as seen from the spatial frames in both the figures.
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Figure 5.7: Performance of all the schemes as a function of slice position Performance
of all the schemes as a function of slice position: The figure shows comparison between
view-sharing, nuclear norm minimization scheme, �1 Fourier sparsity regularization
scheme and BCS scheme (Rows 1-4) for slices positioned at the center (1st column),
anterior (2nd column), and posterior (3rd column) of the lung. We observe that all
schemes except the BCS scheme suffer from higher temporal blurring in the slices
at anterior and posterior regions of the lung than those in the center region. BCS
scheme is relatively insensitive to the slice position as compared to other schemes.

However, the �1 Fourier sparsity regularization scheme results in higher temporal

blurring than BCS. In slices where the tissue motion is very subtle (slice 6 in Fig. 5.6),

BCS preserves the motion whereas all other schemes result in blurring of temporal
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details. One of the radiologists carefully analyzed the performance of all the schemes

as a function of slice position while clinical scoring as shown in Fig. 5.7 and found

that, the performance of the BCS scheme was relatively insensitive to the slice position

compared to other schemes. Specifically, the reconstructions of the anterior and

posterior slices of the lung (2nd and the 3rd column of Fig. 5.7), obtained by the

other schemes, showed higher degradation in image quality than the more central

slices (1st column of Fig. 5.7) especially in terms of spatial and temporal blurring

(pointed by arrows).

Tables 5.1, 5.2, 5.3 shows the visual scores of all the four schemes by both

the radiologists (denoted as R1 and R2) based on three different factors: Aliasing

artifacts, Temporal blurring and Spatial blurring respectively. The scores from both

the radiologists suggest that the BCS scheme performs better than other schemes in

the temporal blurring (Table 5.2) and spatial blurring (Table 5.3) categories. The

improved performance of BCS can be attributed to the spatially varying non-local

averaging feature and its ability to adapt to the cardiac and respiratory patterns

of the specific subject. The qualitative scores for aliasing artifacts are roughly the

same for nuclear norm minimization scheme (3.75 ± 0.7, 2.62 ± 1.19) and BCS

scheme (and 3.62 ± 0.51, 2.62 ± 0.91); the two figures within parentheses denote

the mean scores from R1 and R2, respectively, and the number following ± is the

standard deviation. We observe that the inter-observer variability is high for this

category compared to the others. The scores for the view-sharing scheme are much

lower than other three schemes for all the three categories from both radiologists.
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In summary, the BCS scheme, the nuclear norm minimization scheme and the `1

Fourier sparsity regularization scheme perform comparably in terms of minimizing

the aliasing artifacts.

However, BCS scheme out-performs all other schemes in terms of minimizing spatio-

temporal blurring as compared to the other schemes.

Fig. 5.8 shows the lung volume as a function of time and the lung segmentation

contours for the BCS, nuclear norm minimization and `1 Fourier sparsity regulariza-

tion schemes on one subject with tidal breathing maneuver. The change in lung

volume for BCS (approximately 200 mL) was significantly different from that for the

nuclear norm minimization scheme (around 150 mL) and `1 Fourier sparsity regular-

ization scheme (<100 mL). The contours depict the boundary of the lung obtained

from the segmentation of the reconstructions. The two time points (a and b) in the

figure correspond to maximum inspiratory volume. From the contours, we observe

that at maximum inspiration the boundary of the lung for nuclear norm minimization

and `1 Fourier sparsity regularization scheme is higher than that for the BCS scheme,

which means the volume of the lung is less than that for the BCS scheme. This is

attributed to higher temporal blurring in the other two schemes as compared to the

BCS scheme. The time point c corresponds to maximum expiration. From the last

row in the figure we observe that the segmentations from all the three schemes are the

same. The tidal volume analysis could not be performed on the view-sharing scheme

since the reconstructions in this case suffered from aliasing artifacts, which resulted

in poor segmentation of the lungs.
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Figure 5.8: Comparison of BCS, Nuclear norm minimization and �1 Fourier sparsity
regularization schemes for changes in lung volume as a function of time for Subject 8
Comparison of BCS, Nuclear norm minimization and �1 Fourier sparsity regulariza-
tion schemes for changes in lung volume as a function of time for Subject 8: The plot
shows the volume of lung (in mL) as a function of time obtained from reconstructions
using BCS (in red), nuclear norm minimization (in green) and �1 Fourier sparsity reg-
ularization (in blue). The second, third and fourth rows show the lung segmentation
contours for the three schemes at three time points a. and b. and c. respectively.
The contours are shown for three of the 18 slices. From the plot as well as from
the segmentations, we can see that the nuclear norm minimization and �1 Fourier
sparsity regularization scheme suffer from considerable temporal blurring. Note: that
the segmentations at time point c (peak expiration) are almost the same. This is ex-
pected because the position of the diaphragm changes more during inspiration than
expiration.
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Figure 5.9: Changes in lung volume as function of time Changes in lung volume as
function of time: The figure shows the changes in lung volumes as a function of time
in case of tidal breathing maneuver (shown on the left) and deep breathing maneuver
from total lung capacity (TLC) to functional residual capacity (FRC) (shown on the
right). The segmented lung volumes during peak inhalation and peak exhalation are
also shown for both breathing maneuvers. The tidal volume was measured to be
approximately 200mL and the normal minute ventilation was around 4L/min. The
supine inspiratory capacity was measured to be 1.5L. Note that these numbers are
for supine position.

Fig. 5.9 shows the change in volume as a function of time and the segmented

lung volumes for one subject with tidal breathing and deep breathing maneuvers. The

lung was segmented from the reconstructions obtained using the BCS scheme. The

change in lung volume was approximately 200mL. The normal minute ventilation was

calculated as tidal volume x number of breathing cycles in a minute which was found

to be 4L/min. In case of deep breathing maneuver we measured the supine inspiratory

capacity, which was found to be 1.5L. This correlates well with the literature for

normal subjects in the supine position.
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Figure 5.10: Tracking diaphragm motion using velocity maps Tracking diaphragm
motion using velocity maps: The motion of the diaphragm was tracked at two time
points between inspiration shown in (a-b) and two time points between expiration
shown in (c-d). The velocity from inspiration to expiration is considered positive (in
green) and velocity from expiration to inspiration is considered negative (in red). The
velocity field maps and the color-coded velocity maps are shown for all four cases.
The change in lung volume shown by blue segment is much lesser than the change in
lung volume shown by red segment. This translates to higher diaphragm motion in
frames in red segment as compared to the blue segment as seen from the color coded
velocity maps in a and b. Similar results were observed during both inspiration and
expiration.

The motion of the diaphragm as tracked using an optical flow method is shown

in Fig. 5.10. Two sets of two frames each, one set with a large change in diaphragm

position (red segment and blue segment) and one with little change in diaphragm
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position (green segment and orange segment) were chosen during inspiration and

expiration. The velocity vector maps and the color-coded velocity maps are shown

in each of the cases. Fig. 5.10(a-b) shows the velocity maps during inspiration

and Fig. 5.10(c-d) shows the velocity maps during expiration. From the color-coded

velocity maps we observe that a higher displacement in the diaphragm position (higher

diaphragm velocity) correlates well with the observed change in lung volume between

the corresponding frames during both inspiration and expiration.

5.4 Discussion

The application of compressed sensing together with parallel imaging to accel-

erate 3D dynamic imaging of lung volumes and diaphragm motion has not been stud-

ied extensively in the past. We evaluated the performance of four different schemes

(view-sharing, nuclear norm minimization scheme, `1 Fourier sparsity regularization

scheme and BCS scheme) in accelerating 2D and 3D dynamic free breathing MRI of

the thorax in 8 normal subjects. In both our 2D and 3D experiments, we observe that

the BCS scheme yields superior reconstructions compared to other schemes qualita-

tively and quantitatively. The BCS scheme, along with golden angle sampling pat-

terns, offered a temporal resolution of ≈ 500ms and a spatial resolution of 2.7 × 2.7

× 10mm3 with whole lung coverage, while maintaining image quality. To the best of

our knowledge, this is the first work, which demonstrates temporal resolution of less

than 1 sec, along with whole coverage of the thorax, which enables 3D free breathing

dynamic imaging of lung volumes and diaphragm motion.
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We observe that the classical view-sharing scheme suffers from severe temporal

blurring as it combines information from adjacent frames. Since the data acquired is

free breathing, the respiratory motion between adjacent frames is very high. Hence,

the view-sharing approach results in extensive blurring. In contrast, the constrained

schemes can be thought of as non-local view-sharing schemes; their ability to combine

information from frames/pixels that are highly similar enables them to reduce blur-

ring. We observe that the ability of the BCS and the `1 Fourier sparsity regularization

scheme to spatially adapt the non-local averaging depending on the dynamics enables

them to provide better reconstructions than the nuclear norm minimization scheme.

In dynamic datasets with regions corresponding to strikingly different dynamics (e.g.

cardiac and respiratory motion), the ability to spatially adapt the non-local averaging

can give improved results. The `1 Fourier sparsity regularization scheme is sensitive

to irregular voxel profiles resulting from non-linear interactions between cardiac and

respiratory motion. This is because irregular voxel profiles result in a higher number

of non-zero Fourier coefficients, thus disrupting the sparsity assumption. The regular-

ity of the breathing patterns will vary from subject to subject leading to inconsistent

performance of the `1 Fourier sparsity regularization scheme. These schemes may

not be reliable in the dynamic assessment of lung volumes during free breathing in

patients suffering from emphysema or other causes of dyspnea. The patient specific

dictionaries in the BCS scheme may be a better choice in patients that are short of

breath; these learned basis functions will result in a sparser data representation and

hence provide reliable recovery from fewer measurements. Additionally, incoherent
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sampling by golden angle ordering aids in obtaining a sparser representation, leading

to superior reconstructions. Other interleaved sampling patterns may also lead to

similar accelerations however a thorough validation of this claim is beyond the scope

of the manuscript. We observe that there are currently several different flavors of

compressed sensing implementations, which may be applied to this specific problem.

We have used the radial FLASH sequence to demonstrate the feasibility of the BCS

scheme. However, this scheme can be combined with more efficient trajectories with

longer readouts (e.g. multi-shot EPI, multi-shot spiral) to further improve spatial

and temporal resolution and echo-time, which is the focus of this chapter. The accel-

eration provided by BCS can enable us to keep the readout duration small enough to

minimize B0 induced distortions and losses.

The average scores from both the radiologists indicate good agreement for

spatial and temporal blurring criteria. There is relatively higher inter-observer vari-

ability in scores for the aliasing artifact criterion, but the mean scores from both the

radiologists suggest that the BCS scheme performs better. The post-scoring discus-

sion revealed that one of the radiologists gave more importance to the blurring and

artifacts that affected the diaphragm motion or diaphragm delineation. By contrast,

the other radiologist rated the datasets based on the blurring and artifacts in the

whole image rather than placing more emphasis on the diaphragm. This explains the

bias in the scores pertaining to spatial blurring. The number of subjects is insufficient

to perform statistical analysis for inter-observer agreement.

Our preliminary results using the BCS scheme for dynamic imaging of lung
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volumes and diaphragm motion obtained from a single dataset appear promising. The

normal minute ventilation in a resting adult in the upright position is about 5L/min

to 8L/min [95]. However the normal minute ventilation in the supine position is

less than in the upright position [96, 97] and all of our MRI images were obtained

in the supine position. The measured minute ventilation of 4L/min is within the

normal range for a supine subject. The measurement of minute ventilation is useful

in a number of disease mechanisms that produce arterial hypercapnia [95]. The lung

volumes were segmented using a simple region growing approach with minimal user

interference. There are more sophisticated lung segmentation algorithms including

the fuzzy-connectedness algorithm that could be performed to further improve our

lung segmentation.

The proposed imaging protocol acquires 3D data with 16 partitions using the

stack of stars trajectory; the sampling pattern is the same for all the partitions,

which enables slice-by-slice recovery. While the number of slices is sufficient for good

depiction of diaphragm and lung volume dynamics in normal subjects, it may not be

sufficient for obese subjects. Improved slice coverage may be obtained using fully 3D

recovery exploiting the spatial redundancies and using 3D trajectories. The current

sequence uses a 3D stack of stars trajectory, where the sampling along the kz direction

is uniform. Since the kz direction is fully sampled (except in some cases where partial

Fourier recovery is used), we compute a Fourier transform along kz and recover each

slice independently. We anticipate that using different angles for different kz planes as

well as sampling different kz planes with different sampling density will provide a more
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incoherent and appropriate sampling pattern. This strategy may result in improved

recovery, but at the cost of higher computational complexity and memory demand,

since we cannot decouple the problem to solve for each slice independently. The

golden angle-sampling pattern was used to achieve incoherent sampling across time

frames; however, other interleaved patterns can be used with BCS to provide these

accelerations. Our future work will focus on these and other image reconstruction

schemes that are optimized for individual patients suffering from respiratory disorders

including COPD, asthma, and cystic fibrosis.

In conclusion, our study indicates that the blind compressed sensing (BCS)

scheme gives individualized reconstructions with diagnostically useful image qual-

ity and minimal spatio-temporal blurring as compared to other accelerated imaging

schemes. We showed 3D dynamic imaging of lung volumes and diaphragm motion

with high spatial and temporal resolution is achievable using the BCS scheme.
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CHAPTER 6
SUMMARY AND FUTURE WORK

6.1 Summary

Magnetic resonance Imaging (MRI) is a non-invasive, radiation free imaging

modality. The ability of MRI to safely provide information about anatomical struc-

ture as well as physiological behavior makes it a promising diagnostic tool in several

applications. However, MRI is a slow imaging modality. This makes it less applicable

in the clinical setting especially in case of multi-dimensional MRI applications such

as dynamic imaging of moving organs, dynamic imaging of contrast uptake through

organs and characterization of tissue time relaxation properties. This is because the

data acquisition is sequential in time and is limited by slow MRI device physics and

the hardware of the scanners. Recently, several schemes have been developed to accel-

erate MRI acquisitions. Parallel MRI acquisition methods have considerably reduced

the number of samples acquired. However, these methods give reasonable results for

small acceleration factors, typically 3 or 4 fold, and are limited by noise amplification

and aliasing artifacts at high acceleration factors. Compressed sensing (CS) in MRI

has allowed for the recovery of the underlying image/signal with significantly lesser

number of measurements. It assumes the underlying image/signal to be sparse in

some transform domain i.e. that the signal has a sparse representation in a set of sig-

nals (or ‘basis functions) called the dictionary. Current dictionary learning algorithms

are non-adaptive i.e. they use a pre-determined dictionary (E.g. Fourier transform)
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thus making them less subject specific.

The main hypothesis is that the use of adaptive dictionaries can better spar-

sify the underlying signal thus reducing the number of samples acquired and im-

proving resolution and volume coverage of multi-dimensional MRI applications. This

thesis develops novel dictionary learning based reconstruction framework to acceler-

ate multi-dimensional MRI acquisition and reconstruction in the context of multi-

parameter mapping and dynamic lung imaging applications. The main contributions

of this thesis include:

• We have developed a multi-coil blind compressed sensing (BCS) scheme with

extension to include non-convex penalties. The model represents the signal as

a sparse linear combination of basis functions from an over-complete learned

dictionary. The dictionary is learnt from the undersampled data itself making

it subject specific and adaptive. We developed two different implementations

to solve the multi-coil BCS optimization problem. We developed an efficient al-

gorithm (Algorithm 1) which uses the augmented Lagrangian approach to solve

for the dictionary and a Majorize minimize approach to solve for the coefficients.

This algorithm requires CG solvers. We also developed a faster implementation

of the algorithm to further reduced the computation time by using the variable

splitting approach. The algorithm also employs efficient continuation strate-

gies to minimize the local minima effects. From the comparisons on 2D fully

sampled multi-parameter mapping dataset, we observe that the implementation

with variable splitting technique has a speed up factor of up to ≈15 fold.



www.manaraa.com

95

• The multi-coil BCS scheme enabled whole brain multi-parameter mapping of the

brain. The parameters under consideration were T1ρ and T2. The acceleration

factor of 8 reduced the scan time to 20 min with the achieved spatial resolution

of 1.7mm3 isotropic and 12 encoding parameters for each T1ρ and T2 imaging.

2D retrospectively undersampled experiments showed the superior performance

of the BCS scheme in yielding good parameter maps and robustness of scheme

to motion as compared to other schemes. We also demonstrated the advantage

of multi-parameter mapping over single parameter mapping.

• We demonstrated the utility of the multi-coil BCS scheme with non- Carte-

sian sampling to enable 3D dynamic free breathing lung MRI imaging with

whole lung coverage. A 3D stack of stars golden angle radial trajectory was

used to acquire the lung imaging data. The non-orthogonal dictionary offers a

richer representation of the signal and hence has significant improvement over

the traditional CS and low rank schemes. The clinical evaluations from two

expert cardio-thoracic radiologists, and the mean square error and high fre-

quency error metrics showed that BCS scheme yields superior reconstructions

as compared to CS, low rank and view sharing schemes. The estimation of lung

volumes from all schemes showed significantly less spatio-temporal blurring in

BCS reconstructions as compared to other schemes. The 3D lung function and

respiratory mechanics estimates with a temporal resolution of 500ms, spatial

resolution of 2.6x2.6mm2 and whole lung coverage (16-20 slices) were obtained

with an acceleration factor of 8.
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6.2 Future work

The methods developed in this thesis are targeted towards clinical utility. The

method was tested on a limited number of subjects for both the multi-parameter

mapping and 3D dynamic lung imaging application. In order to assess the efficiency

and reproducibility of the method, the method should be tested on a large cohort of

healthy subjects as well as subjects suffering from diseases for both applications.

Extensions of the 3D radial stack of stars sampling to fully 3D radial or spiral

sampling scheme or using a variable density stack of stars radial sampling would

enable exploitation of redundancies across the slice direction. This would provide a

more sparse representation and hence would enable higher acceleration factors. In

the current work all the reconstructions were performed slice by slice. The joint

recovery of the 3D + time dataset could provide better reconstructions than 2D +

time reconstructions.
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APPENDIX A
TEMPORAL POINT SPREAD FUNCTION ANALYSIS

A.1 Tradeoffs in image recovery using constrained algorithms

Tradeoffs in image recovery using constrained algorithms The nuclear mini-

mization scheme, the `1 Fourier sparsity regularization scheme, and the BCS rely on

modeling the temporal profiles/columns of the Casorati matrix. The sparsity priors

on the coefficients U in BCS and on the Fourier coefficients in the `1 Fourier spar-

sity regularization scheme cause many of the coefficients to be zero. Hence these

schemes use different basis functions at different pixels. The nuclear norm minimiza-

tion scheme, in contrast, does not enforce any sparsity prior and hence uses the same

basis functions at each pixel. The projection of the intensity profile at the pixel (x,y),

denoted by the vector ρ̂(x,y), is obtained as

ρ̂(x,y) = Px,yρx,y (A.1)

where the matrix Px,y is the specified by

Px,y = V′ac(VacV
′
ac)
−1Vac (A.2)

The rows of the matrix Vac are the temporal basis functions that are active at the

pixel. The above relation shows that the intensity at the ith frame (ith row of ρ̂(x,y))

is obtained as the weighted linear combination of all the entries in ρx,y; the weights
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are specified by the ith row of Px,y. We term the rows of the Px,y matrix in Eq.

(A.2) as the temporal point spread function (TPSF) since it characterizes averaging

across time performed by the above constrained schemes to remove aliasing, which is

noise-like in case of radial undersampling (see Fig A.1). We observe that each row of

the matrix gives the weights for the corresponding time point.

Since we use the `1 norm, which is a convex relaxation of `0 sparsity, the re-

covered coefficients are not exactly sparse, and have many small non-zero coefficients.

Similarly, the recovered matrix is not exactly low rank in the nuclear norm setting.

For visualization purposes, we truncate the coefficients whose magnitudes are less

than 0.1% of the maximum in the Fourier sparsity regularization and BCS settings

to generate Fig. A.1 . Similarly, we perform a singular value decomposition of the

recovered matrix, followed by a truncation of singular values less than 0.1% of the

maximum in the nuclear norm scheme. We stress that this truncation is only used

for visualization; the actual algorithms do not use truncation. Fig. A.1 shows the

TPSF for one time point corresponding to peak inhalation (specified by solid orange

line) obtained from the reconstructed data and the corresponding signal profiles at

three pixels. The pixel intensity at a specific pixel and time point in the denoised

image is obtained as a weighted linear combination of pixels at all the time points

at the same spatial location; the weights are specified by the value of the TPSF. We

observe that the TPSF values are higher for frames with similar respiratory phase

(marked by dotted orange markers), which implies that these pixels contribute to the

summation heavily. We observe that the TPSF is spatially and temporally varying for
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Figure A.1: Illustrations of different algorithms Illustrations of different algorithms:
The TPSFs at a specific time frame at peak inhalation (shown by solid orange marker)
and the underlying signal time profile are shown for three different pixels. The TPSF
plots show that all the three constrained schemes provide non-local averaging of pixel
values, thus offering good denoising without resulting in temporal blurring. However
the TPSF of view sharing is spatially and temporally invariant and thus leads to
significant temporal blurring. The TPSF of BCS and �1 Fourier sparsity regularization
scheme are spatially varying, while the nuclear norm minimization scheme is spatially
invariant. We see that the TPSF from BCS is in good correlation with the underlying
time profiles (black curves) at the respective pixels. The TPSF for the time frames
shown by the solid orange marker has high values corresponding to time frames in the
similar respiratory phase (shown by dotted orange marker). These frames contribute
predominantly to the recovery of the specific frame, since this recovery is a weighted
combination of signal at other time frames and the weights are specified by TPSF.

BCS and �1 Fourier sparsity regularization scheme. Since the low-rank minimization

scheme uses the same set of basis functions at each pixel, in this case the TPSF is
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only temporally varying. The TPSF for view sharing method is both temporally and

spatially invariant as seen in Fig. A.1.
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